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nonlinear terms, and the form that the energy expression takes upon discretization
of the structure.

A section follows in which the energy formulation for stress, stability, and
vibration analyses of an elastic curved beam is given, including thermal effects,
moderately large rotations, boundary conditions, and distributed and concentrated
loads. The matrix notation and type of discretization are introduced here which
will later be used for the analysis of shells of revolution. Terms in the local
element stiffness, mass, and load-geometric matrices are derived in terms of nodal
point displacements, and it is shown how these local matrices are assembled into
global matrices. The purpose of the section is to demonstrate the procedure for
derivation of the analogous equations and quantities for shells of revolution or
more complex structures.

The next section is on elastic shells of revolution. It opens with a summary
of what computer programs exist for stress, buckling, and stability analyses of such
structures. The assumptions on which these programs are based are listed and the
various components of the energy functional, such as strain energy of the shell and
discrete rings, are indentified and derived in terms of nodal point displacements.
Included are a derivation of the constitutive law for anisotropic shell walls and a
formulation of nonlinear constraint conditions, which are required for the treatment

f segmented or branched shells with meridional discontinuities between segments or
branches. Derivations of terms in the global stiffness and load-geometric matrices
and the force vector are given, with tables tracing the origin of each term. The
computational strategy for calculation of critical bifurcation buckling loads in
the presence of prebuckling nonlinearities is given, with an example of buckling
under axial compression of a very thin cylinder. This is a simple problem to formu-
late but a difficult one to solve numerically, owing to the existence of closely
spaced eigenvalues corresponding to nonsymmetric buckling at loads close to the
load corresponding to nonlinear axisymmetric collapse. A description of various
pitfalls encountered in the search for the lowest bifurcation buckling load is
given, including estimates of the critical number of circumferential waves in the
buckling mode. Computerized formulations and run times are compared for various
discretization methods, including finite difference energy models and standard
finite element models, with an example showing comparisons of rate of convergence
with increasing nodal point density and computer times required to form stiffness
matrices.

Hybrid bodies of revolution are discussed next. By "hybrid" is meant a body
of revolution with both one-dimensionally and two-dimensionally discretized regions
The formulation is particularly useful for the stress, buckling, and vibration
analyses of branched shells or ring-stiffened shells in which one is particularly
interested in local effects within a distance equal to a shell wall thickness of a
branch or ring. An appropriate strategy for the solution of nonlinear problems
with simultaneous geometric nonlinearity and pathdependent material properties is
described, including the development of the incremental constitutive law for the
tangent stiffness method of treatment of elastic-plastic structures. The two-
dimensionally discretized regions are modeled with use of 8-node isoparametric
quadrilaterals of revolution. Details are presented on the formulation of con-
straint conditions for compatibility at junctions between rotationally symmetric
shell segments (one-dimensionally discretized regions) and solid segments (two-
dimensionally discretized regions).

The report closes with a summary of linear equations for general shells, Sur-
face coordinates, the first and second fundamental forms, and the definition of a
shell are introduced, and the assumptions corresponding to Love's first approxima-
tion are identified, The differences in commonly used or referencepd forml ations
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are listed, including differences with regard to kinematic relations, expressions
for total strain anywhere in the thickness of the shell wall, and expressions for
stress and moment resultants. Comments are offered on which theory is the most
suitable for engineering estimates.
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SUML1ARY

The volume opens with a general discussion of terms in an energy functional

which might be the basis from which equations governing stress, stability,

and vibration analyses are derived. The energy expression includes strain

energy of the shell and discrete stiffeners, kinetic energy of the shell and

stiffeners, constraint conditions with Lagrange multipliers, and other terms

arising from the change in direction of applied loads during deformation.

Brief discussions are included of the coupling effect between bending and ex-

tensional energy needed for the analysis of layered composite shells or

elastic-plastic shells, nonlinear terms, and the form that the energy expres-

sion takes upon discretization of the structure.

A sect4on follows in which the energy formulation for stress, stability, and

vibration analyses of an elastic curved beam is given, including thermal effects,

moderately large rotations, boundary conditions, and distributed and concen-

trated loads. The matrix notation and type of discretization are introduced

here which will later be used for the analysis of shells of revolution. Terms

in the local element stiffness, mass, and load-geometric matrices are derived

in terms of nodal point displacements, and it is shown how these local matrices

are assembled into global matrices. The purpose of the section is to demon-

strate the procedure for derivation of the analogous equations and quantities

for shells of revolution or more complex structures.

The next section is on elastic shells of revolution. It opens with a summary

of what computer programs exist for stress, buckling, and stability analyses
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of such structures. The assumptions on which these programs are based are

listed and the various components of the energy functional, such as strain

energy of the shell and discrete rings, are identified and derived in terms

of nodal point displacements. Included are a derivation of the constitutive

law for anisotropic shell walls and a formulation of nonlinear constraint con-

ditions, which are required for the treatment of segmented or branched shells

with meridional discontinuities between segments or branches. Derivations of

terms in the global stiffness and load-geometric matrices and the force vector

are given, with tables tracing the origin of each term. The computational

strategy for calculation of critical bifurcation buckling loads in the presence

of prebuckling nonlinearities is given, with an example of buckling under axial

compression of a very thin cylinder. This is a simple problem to formulate

but a difficult one to solve numerically, owing to the existence of closely

spaced eigenvalues corresponding to nonsymmetric buckling at loads close to

the load corresponding to nonlinear axisymmetric collapse. A description of

various pitfalls encountered in the search for the lowest bifurcation buckling

load is given, including estimates of the critical number of circumferential

waves in the buckling mode. Computerized formulations and run times are com-

pared for various discretization methods, including finite difference energy

models and standard finite element models, with an example showing comparisons

of rate of convergence with increasing nodal point density and computer times

required to form stiffness matrices.

Hybrid bodies of revolution are discussed next. By "hybrid" is meant a body

of revolution with both one-dimensionally and two-dimensionally discretized

regions. The formulation is particularly useful for the stress, buckling, and

vibration analyses of branched shells or ring-stiffened shells in which one is
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particularly interested in local effects within a distance equal to a shell

wall thickness of a branch or ring. An appropriate strategy for the solution

of nonlinear problems with simultaneous geometric nonlinearity and path-

dependent material properties is described, including the development of the

incremental constitutive law for the tangent stiffness method of treatment

of elastic-plastic structures. The two-dimensionally discretized regions are

modeled with use of 8-node isoparametric quadrilaterals of revolution. De-

tails are presented on the formulation of constraint conditions for compati-

bility at junctions between rotationally symmetric shell segments (one-

dimensionally discretized regions) and solid segments (two-dimensionally

discretized regions).

The report closes with a summary of linear equations for general shells. Sur-

face coordinates, the first and second fundamental forms, and the definition

of a shell are introduced, and the assumptions corresponding to Love's first

approximation are identified. The differences in commonly used or referenced

formulations are listed, including differences with regard to kinematic rela-

tions, expressions for total strain anywhere in the thickness of the shell

wall, and expressions for stress and moment resultants. Comments are offered

on which theory is the most suitable for engineering estimates.

xi



Section 1

GOVERNING EQUATIONS - AN INTRODUCTORY SUMMARY

The majority of computerized analyses of thin shells are based on an energy

formulation, important exceptions being the programs for shells of revolu-

tion by Cohen [1], Kalnins [ 2], and Svalbonas [ 3] based on forward

integration. Energy expressions can be used to demonstrate the kinds of

terms that should be included in a reasonably comprehensive computer pro-

gram intended to be widely used for the analysis of stress, buckling, and

vibration of practical engineering shell structures.

Strain Energy

If the displacement method is used, the strain energy of the shell is'

expressed in terms of the strains and changes in curvature of the refer-

ence surface, which is not necessarily the middle surface or the neutral

surface

=1

U shell 2 f (eTCe + 2Ne) dS (1)
S

where dS is the elemental area of the reference surface. The six ele-

ment vector e represents the reference surface strains el, e 2 , e 1 2 ,

and changes in curvature K1 , K2 , K1 2; and C is a 6 x 6 symmetric matrix

of coefficients which depends on the location of the wall material relative

to the reference surface, on the details of the wall construction, on the



temperature, and, if plasticity is present and the tangent stiffness method

is used L 4], on the stress-strain curve and flow law of the material. The

quantity N is a vector containing thermal expansion effects, creep strains,

and plastic strains. If plasticity is present or if the material properties

depend on the temperature, the elements of C and N at a point on the

reference surface must in general be determined by numerical integration

through the thickness. Stricklin et al. [ 5] and Bushnell [ 4] point out

that Simpson's rule should be used for the integration. Jones [ 6], Ashton

et al. [ 7], and Ashton and Whitney [ 8] derive C for laminated wall con-

struction.

Coupling between Bending and Extensional Behavior

If the middle surface is the reference surface, and if the properties of

the wall are symmetric with respect to this surface, then all those elements

of C are zero through which stress resultants NJ, N2 , N1 2 cause changes

in curvature KI, K2 , K1 2 , and through which moment resultants MI, M2 , M1 2

cause normal strains of the reference surface. Generally, however, there

exists coupling of bending and extensional behavior which cannot be elimi-

nated by a shifting of the reference surface. Three common examples

are shells reinforced in one direction by stiffeners that are eccentrically

located with respect to the shell's neutral surface, shells stressed into

the plastic region by a combination of stretching and bending, and nonuni-

formly heated shells constructed of temperature-dependent material. In the

first example the neutral surface with regard to bending and stretching in

one direction is in a different plane from the neutral surface with re-

gard to bending and stretching in an orthogonal direction. In the second

and third examples the location of the neutral surface changes with

strain and temperature distribution. In all three of the examples it is
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not possible to choose a priori a reference surface location in order to

eliminate coupling between extensional and bending terms in the energy

expression. In addition, it is often advantageous not to have to choose

the middle surface as a reference surface, since practical monocoque shell

structures often have variable wall thicknesses and doublers which make the

middle surface difficult to describe mathematically and which cause its

position to change abruptly in space. Coupling between bending and stretch-

ing energy is also present in shells with composite walls such as layered

orthotropic, fiber-wound, or semisandwich corrugated construction.

One of the first requirements of a computer program for shell analysis,

therefore, is to permit arbitrary location of the reference surface with

respect to the wall material and to include in the mathematical model the

energy coupling between changes in curvature and normal strains of this

surface. If the engineer is interested in performing analyses of many

different kinds of shell structures, he is advised to obtain a computer

program or programs which include coupled membrane and bending behavior.

The traditional finite element model of a shell in which membrane and

bending behavior are introduced through separate elements is not gener-

ally adequate.

Kinematic Relations and Nonlinear Terms

In Eq. (1) the strain vector e can be expressed in terms of displace-

ment and rotation components and derivatives of these quantities. Kine-

matic relations have been given by many authors. The nonlinear strain-

displacement equations of Love [ 9], Novoshilov [10], or Sanders [ 11]

3



are acceptable as a basis for the displacement method. In general, non-

linearities need not be retained in the change-in-curvature-displacement

relations as long as the largest reference surface rotations are less than

about 20 degrees, which is usually the case. The normal strains el, e 2

and in-plane shear strain e1 2 can always be written so that the highest

order nonlinearities are quadratic.

There is a good physical explanation for the need to retain nonlinear

terms in the strain-displacement but not in the curvature-displacement

relations. If a thin shell deflects a large amount, let us say an ampli-

tude many times the thickness, the strains are usually small even though

the deflections are rather large. Hence, the linear terms in the strain-

displacement relations will tend to cancel each other, and the nonlinear

terms will become significant for much smaller displacements than they

would have if the linear terms had not tended to cancel. The linear

terms inthe expressions for the change in curvature, however, to not tend

to cancel, and the wall rotations must be large indeed before nonlinear

terms have to be included in these expressions.

Discretization - A Brief Summary

Finite element method. By far the majority of computer programs for shell

analysis are based on the finite element method. Gallagher [ 12, 13,

14] gives surveys of the use of finite elements for linear and nonlinear

analysis of general shells. Brombolich and Gould [ 15] present such a

survey for shells of revolution. A detailed description of the various

elements with evaluation will therefore not be presented here. Gallagher

11



encapsulates the state-of-the-art as of 1972: "Three alternative forms of

finite element representation of thin curved shells are popular: (1) in

'faceted' form via the use of flat elements, (2) by means of isoparametric

solid elements which have been specialized to represent curved thin shells,

and (3) via the theories formulated directly for shallow or deep curved

shells" [ 13].

Until about 1970 finite element experts using the displacement method were

insistent that the displacements of adjacent elements be fully compatible

at the common boundary. Maintenance of slope and displacement compatibility

does have the advantage of guaranteeing that convergence of displacements

is monotonic from below and that eigenvalues for bifurcation buckling and

modal vibrations converge monotonically from above (assuming that in the

case of vibrations a consistent mass matrix is used). However, the en-

forcement of full interelement compatibility results in an overestimation

of the stiffness of the structure, which tends to decrease the rate of con-

vergence as the nodal point density is increased. Wilson [ 163 introduces

incompatible displacement functions in order to improve the convergence

properties.

A major drawback of incompatible elements used in bifurcation buckling

analysis is the tendency of the discretized model to yield spuriously low

buckling eigenvalues. For example, an engineer may wish to set up a dis-

cretized model in which the nodal points are locally concentrated in order

that local buckling near some stress concentration be accurately predicted.

However, because of the unfortunate property of convergence from below,

this model may yield a physically unreasonable prediction of buckling in



some areas where the compressive stresses are lower but the nodal point dens-

ity is sparse. This spurious mode and others would likely prevent calculation

of the local mode for which the locally dense mesh was originally established.

The problem of spurious buckling modes becomes especially severe in cases

for which an intuitive grasp of the expected behavior is weak.

Finite difference energy method. A few shell analyses have been performed

and computer programs written based on the finite difference energy method,

in which the displacement derivatives appearing in e (Eq. 1) are replaced

by finite difference expressions. Johnson [ 17] was the first to perform

such an analysis with use of an arbitrary quadrilateral finite difference

mesh. A widely used computer program based on this approach is BOSOR4,

which treats stress, buckling, and vibration of axisymmetric shells [ 18].

A good test case. Bushnell [ 19] presents a comparison of the finite

element method and the finite difference energy method, showing that in

certain cases the finite difference energy method is actually a rapidly

convergent kind of finite element method in which the element displacements

and rotations are incompatible at interelement boundaries. Figures 1 and

2, taken from [ 19], show the results of a convergence study involving

a free hemisphere pinched by a cos 20 pressure distribution. This rather

ill-conditioned problem is a very good test of various methods of discreti-

zation. The problem is ill-conditioned because small forces cause large

displacements. Thus, the predicted reference surface strains are very

small differences of relatively large numbers. The dotted line in Figure

2 is obtained with use of a half-station finite difference energy method,

which is equivalent to a finite element method based on linear functions

6



for u and v and a quadratic function for w. Detailed descriptions of

the finite elements are given in [ 191 and [ 20]. Users and developers

of computer programs for shell analysis and for general structures are

urged to employ this case in order to determine the adequacy of the shell

elements in the finite element libraries of their programs.

Discretized kinematic relations. With use of a discretization method,

analytical kinematic relations e = L(d), where L is a nonlinear differ-

ential operator and d is the displacement vector, can be expressed in the

algebraic form

ei = Bd. + diBNd 2)
L i iBd ( 2)

The vector ei represents reference surface strains and changes in curva-

ture at some point i; di is the local nodal point displacement vector

associated with i; and BL and BNL are 6 x m matrices dependent on

the local reference surface geometry and mesh spacing at i. The number

of columns m of BL and BNL depends on how many nodal degrees of free-

dom are used in the discrete model. If Eq. ( 1) is expressed in discrete

form, and if the right-hand side of Eq. ( 2) is substituted into it, the

strain energy expresssion for the thin shell becomes a quartic algebraic

form in the di if C and N are independent of di.

Stiffener Strain Energy

Many practical shell structures are reinforced by stiffeners. Depending

on the configuration these might be "smeared out" or treated as discrete

elastic structures.

7



"Smeared" stiffeners. If there exists a regular pattern of reasonably closely

spaced stiffeners, their contribution to the wall stiffness of the shell or

plate might be modeled by an averaging of their extensional and bending rigid-

ities over arc lengths equal to the local spacings between them. Thus, the

actual wall is treated as if it were orthotropic. This "smearing" process

accounts for the fact that the neutral axes of the stiffeners do not in general

lie in the plane of the reference surface of the shell wall. Predictions of

buckling loads and vibration frequencies of stiffened cylinders have been

found to be very sensitive to this eccentricity effect. A general rule of

thumb for deciding whether to smear out the stiffeners or to treat them as

discrete is that for smearing there should be about 2 to 3 stiffeners per half-

wavelength of the deformation pattern. It may be appropriate to smear out

stiffeners in a buckling or vibration analysis but, because of local stress

concentrations caused by the stiffeners, not in a stress analysis. The stiff-

eners can be smeared as an analytical device to suppress local buckling and

vibration modes. In order to handle problems involving smeared stiffeners,

a computerized analysis must include coupling between bending and extensional

energy as described earlier. The paper by Baruch and Singer [ 21] is a clas-

sic in the field of stiffened shell analysis.

Discrete stiffeners. If the stiffeners are so far apart that significant var-

iations of displacement and stress occur between them, then they cannot be

averaged over the entire shell surface but must be treated as discrete one-

dimensional bodies. The standard approach is to assume that the cross section

of the stiffener does not deform but that it translates and rotates in a fash-

ion compatible with the shell to which it is attached. If plane sections of

the stiffener remain planar and normal to the reference axis, the strain

3



energy can be written in a form analogous to that for the shell:

Uf f(eTe + 2N er] dL (3)Ustiffener L r r r

where dL is the incremental length along the reference axis of the stiff-

ener. The four-element vector er represents the reference axis normal

strain e rl' rl3 r2 in two• orthogonal planes, and

twist K G is in general a full 4 x 4 symmetric matrix of coefficients

which depends on the location of the stiffener material relative to the ref-

erence axis, on details of the stiffener construction, on the temperature,

and if plasticity is present and the tangent stiffness method is used, on the

stress-strain curve and the flow law of the stiffener material. The vector

Nr is analogous to N in Eq. ( 1). If plasticity is present or if the

material properties of the stiffener are temperature dependent, the elements

of E and N at a point on the reference axis must in general be determinedr

by numerical integration over the stiffener area. The reference axis strain

e rl, changes in curvature Krl, Kr2, and twist Kr12 can be expressed in

terms of the displacement and rotation components and derivatives of these

quantities referred to the stiffener reference axis. With appropriate dis-

cretization, the stiffener strain vector er can be expressed in algebraic

form as

e B d + d B d4)
ri Lrdri + NLrdri

in which all quantities are analogous to those in Eq. ( 2). Since the ref-

erence axis of the stiffener does not in general lie in the plane of the

reference surface of the shell, the local displacement vector dri must be

expressed in terms of the local shell reference surface displacement d.

9



d ri Edi ( 5)

so that Eq. ( 4) in terms of the dependent variables d. becomes1

e = B LrEdi + diT ETB NLrEdi ( 6)

If Eq. ( 3) is expressed in discrete form and if the right-hand side of

Eq. ( 6) is substituted into it, the strain energy expression for the

stiffener becomes a quartic algebraic form which is added to the shell

strain energy.

Loading

Two aspects of loading are of particular interest when thin shells are

involved: (1) "live" load or following loads vs. "dead" or constant-

directional loads; and (2) loading by means of enforced displacement

vs. loading by prescribed external forces.

Live loads. A "live" or following load is a load the direction of which changes

as the shell surface rotates. The expressions for work done by the exter-

nal forces distributed over the shell surface and along the discrete stiff-

eners are, respectively

Wshell f S (pd + dT Pd) dS 7)

Wtiffr f (qdr + dTQdr1 dL (8)

10-



The second terms in each integrand represent the live load effect. This

effect should be included if the deflections or rotations are moderately

large or, in modal vibration of bifurcation buckling problems, if the half-

wavelength of the mode is the same order of magnitude as the smallest prin-

cipal radius of curvature. Two examples in which the live load effect is

significant are the bifurcation buckling or nonlinear collapse of a very

long cylinder under external pressure and that of a ring under external

radial compression. Inclusion of the live load effect lowers the predicted

failure loads by about 30 percent in these cases.

Displacement vs. force loading. Loading may be applied by means of a con-

trolled displacement distribution (such as uniform end shortening of a

cylinder) or by means of a controlled force distribution (such as uniformly

applied axial force). A given thin shell structure may behave very differ-

ently under these two loading conditions. If a boundary displacement is

imposed, a significant amount of stress redistribution can occur. Flexible

or "soft" parts of the structure deform considerably with more load subse-

quently being taken up by the stiff or "hard" parts. Figures 3 and 4

show shells for which this type of behavior occurs. At an axial load of

about 200 lbs. the flat portions of the pear-shaped cylinder shown in Fig-

ure 3 begin to bend. The load initially carried by these portions is

transferred to the curved parts, which absorb an increasing percentage of

the total load until these also buckle, resulting in a decreased load-

carrying capacity. A similar phenomenon occurs in the case of the axially

compressed cylinder with an elliptical cross section shown in Figure 4.

The perfect cylinder (• = 0) buckles at point A in a mode Aw shown in

insert (a). However, significant post-buckling load-carrying capacity is

11



exhibited at B and finally at C because the load initially carried by the

flatter portions of the cross section (S = 2.2) has been transferred to

the more highly curved portions (S = 0). Less stress redistribution can

take place if the boundary forces are imposed, leading in general to earlier

failure than for cases in which boundary displacements are imposed.

Kinetic Energy

In thin shell analysis it is not necessary to include rotatory inertia of the

shell wall. There is a stronger case for including rotatory inertia of the

discrete stiffeners, however. The kinetic energy of the shell and the

stiffeners has the analytical form

K.E. f . f MTA dS + f md + w IJ dL ( 9)

in which (') indicates differentiation with respect to time, m is the

mass/area of the shell reference surface, mr is the mass/length of dis-

crete stiffener reference axis, wr is the rotation vector of the stiffener

reference axis, and I isamatrixof rotatory inertia components of ther

stiffener referred to its reference axis. As before, various transforma-

tions are used in order to express all quantities in terms of the shell

wall displacements. Whether or not the mass matrix is diagonal depends,

of course, on the discretization model and the choice of nodal degrees of

freedom.

12



Boundary and Other Constraint Conditions

The energy minimization problem (displacement method) is subject to con-

straint conditions corresponding to behavior at the boundaries of the shell

or other locations within the domain where certain relationships between

nodal point displacements are postulated to hold. These conditions may

be linear or nonlinear. Two types of nonlinearity may exist: the first

may result from continually changing geometry as loads are varied; the

second may result from a sudden change in behavior as one part of a struc-

ture contacts another. Other types of constraint conditions are listed in

the Questionnaire for Program Developers in the introduction.

The constraint conditions might be introduced into the analytical model

by means of Lagrange multipliers or by appropriate elimination of rows

and columns of stiffness matrices. If the Lagrange multiplier method is

used, for example, a general nonhomogeneous, nonlinear constraint condition

might assume the form

Uc X da - TLdb - d TNTdb - doi (10)

in which Uc denotes an energy-like term pertaining to constraint condi-

tions; X is a vector of Lagrange multipliers; da and db are displace-

ment vectors at different points, a and b, in the structure; and d

is an applied displacement.

A total energy expression H can be constructed from the right-hand sides

of Eqs. (. 1) through (. 10). For a branched, segmented stiffened shell of

"13



revolution, for example, the expression H might include:

0 strain energy of shell segments, including smeared stiffeners ( 1)

0 strain energy of discrete rings ( 3)

* potential energy of applied loads (.7), (, 8)

* kinetic energy of shell segments ( 9)

* kinetic energy of discrete rings ( 10)

"* constraint conditions for boundaries (. 10)

"* constraint conditions for junctions between shell segments ( 10)

With appropriate substitutions of discretized displacement components q

for continuous variables and numerical integration over shell reference

surface and over the lengths of discrete stiffeners, a nonhomogeneous

quartic functional

t 2

H f f(qq;t) dt ( 11)

tI

can be obtained in which the coefficients as well as the displacements may

be time dependent. (Note that damping as well as fluid or soil structure

interaction effects have been omitted in the above development.) Numeri-

cal solutions for problems involving linear and nonlinear static stress,

bifurcation (eigenvalue) buckling, modal vibration with prestress, and linear

and nonlinear dynamic response can be based on this functional. Through

minimization with respect to the nodal point variables q, a set of sim-

ultaneous algebraic equations is generated. The nature of these equations

and the best numerical methods for their solution depend on the type of prob-

lem that is being solved.
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Section 2

ANALYSIS OF A CURVED BEAM

The foregoing discussion will be illustrated by a one-dimensional example--

* a curved beam shown in Figure 5.

The total energy expression H is given by

H = U - W + U - T (12)C

in which

U = strain energy

W = work done by external loads

Uc constraint conditions
c (Lagrange multiplier formulation)

T= kinetic energy

Strain Energy

The strain energy in the beam is given by

= 1 f ae dV (13)Us 2 Js
vol

in which a is the stress and cs is the strain that produces a:

15



=s E - a T ( 14)

The quantity c is the total strain and T is the temperature rise above

the zero-stress state.

It is assumed that plane sections remain plane, normal sections remain nor-

mal, and the beam deforms only in the plane of the paper. Displacements

and coordinates are shown in Figure 6.

The total strain e(s,z) can be expressed in terms of the strain and change

in curvature of the reference surface:

E(SZ) e(s) - zK(s) ( 15)

and the reference surface quantities e and K can be expressed in terms of

the displacements:

e du/dx + w/R + 12
2 (16)

K = dS/ds

where

= dw/ds - u/R ( 17)

R(s) is the local radius of curvature of the reference surface of the beam,

and g is the rotation as shown in Figure 7.
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The stress a is given by

a = E(e -cT) ( 18)

where E is the modulus of elasticity and a is the coefficient of thermal

expansion.

Using Eqs. (. 14), ( 15), and ( 18), and assuming that the beam is of unit

depth normal to the plane of the paper, one can write Eq. ( 13) in the form

Us f (Le A [ 2{ - 2EcTL, -z e + Eca2T2] dzds (19)

szEz Ez2 K ETL K19

in which L J denotes a row vector, [ ] a matrix, and { } a column

vector.

The quantity Le,Kj denotes a row vector with two elements, e and K.

Equation ( 19) is derived in Figure 8.

Integration with respect to z, and neglect of the term Ea 2T 2 which

does not contain any dependent variables, leads to

U s Le, (Kj 1i ~{ + 2 LN ,MU{] ds C20)

in which

C 11 Edz; C12 - -f Ezdz; C2 2  = f Ez 2 dz
z z z (21)

N = -f EcTdz; MT S f EaTzdz
z z
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The strain energy can be expressed in terms of the displacements and their

derivatives with use of Eqs. (. 16) and ( 17)

External Loading

Suppose that the beam is submitted to loading as shown in Figure 9(a).

The reference surface is considered to be loaded by constant-directional

distributed pressure pn and traction Pt, and constant-directional end

loads, V, H and M.

The work done by the applied loads shown in Figure 9(a) is

W f (ptu + pnw) ds + HuL + Vw + (22)
t n L +L L

provided the loads act in a constant direction as the beam deforms.

In matrix notation, Eq. ( 22) becomes

u u

L
W = J L•tPnOI .w ds + LH,V,MJ WL ( 23)

Constraint Conditions

Suppose the beam is supported as shown in Figure 10. The terms in Uc

[Eq. ( 12)] are

Uc - X0 1 u (0) + X0 2 w (0) + X0 3 W(0)

l+ ( 24)
+ XL 0 + XL2w M + XL30



or in matrix notation

uI 0
U L OIXO2,3 03  + LLI'XL2,XL3 {w 25)

jo 0 0L

Equation ( 25) can be written in a more general form

r u*
3x3 2 3x3

S'j[K + Lw [K B1 w 26)

where, in the case of Eq. ( 25)

3x3 3x3 j
[K ] :1 ;KB 1• = 27)

Kinetic Energy

The kinetic energy of the beam is

T = 2f m(u2 +w2) + I%] ds (28)

in which () denotes differentiation with respect to time, m is the mass/

length of reference surface arc, and I is the mass moment of inertia ofm

the beam cross section.

If one is concerned with modal vibrations

= i• • (u,w) C29)
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in which Q is the modal angular frequency.

In matrix form Eq. ( 28) becomes

ug

3x3
T E2 - [M] w} ds ( 0)

where

[M] M ( 31)
001

Discretization

Now assume that the beam is modeled as a series of discrete elements, with

nodal point displacements distributed as shown in Figure 11. The contin-

uous dependent variables (u,w) must be expressed in terms of nodal point

quantities.

In the special case with the degrees of freedom distributed as shown in

Figure 11 the finite elements are most appropriately chosen to extend

between adjacent u-points. The energy in the beam is then given approxi-

mately by the sum over the number of elements, of the energy density at the

midlength of each element times the arc length h. of that element.
1

If the nodal point spacing is constant, the energy in the ith finite ele-

ment in Figure 11, for example, is evaluated at w.. At this point the
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quantities appearing in Eqs. ( 16) and ( 17) can be written in terms of

nodal point displacements as follows:

u = (uil+ui) / 2

w = w. ( 32)

, = (w i+ - wi_) / (2hi) - (ui 1 + uj) / (2Ri)

e (u-u) / h + wi/Ri +1 2
i ii- i 2i1

K = (wi+I- 2wi +wi) / h ( 33)

- E(ui + Uil) 1 2] (1/Ri)' - (Ui - U;l) / (hiRi)

in which ( )' denotes differentiation with respect to reference surface arc

length, s.

In matrix form Eqs. C 32) can be written asIU 3x5
= [D] {q} (34)

with

3x5 0 1/2 0 1/2 0

[D] 0 0 1 0 0 (35)

1/(2hi) -1/(2Ri) 0 -1/(2Ri) 1/(2hi

and

LqJ {q}T = Lyii _,ui1 ,wiui ,wi+lJ C 36)
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The reference surface strain and change in curvature are given in matrix

form by

I 2x5 iZ1
[B] {q} + 2 

3

(37)

5x5

[B] {q} + L I[NL {q}

0

with

3x5 0 -1/h. I/Ri 1/h 1  0

[B] ) 38)
1/h 2  1 -2/h 2  1/h 2

i/ -2 +hRi i R

and

5x5 5xl ix5
[B NL] = R { [lR__[ ( 39)

in which the vector LRJ is given by the third row of [D]:

LRJ = L- l/(2hi), -1/(2Ri, 0, -l/(2R), +I/(2hi)J ( 40)

In the derivation of the total energy functional H of the ith finite ele-

ment,, matrix formulas for Lu*, $W* , which appears in Eqs. ( 23) and ( 26)

are also needed. If the angle between the tangent to the reference surface

and the horizontal is 4, as shown in Figure 9, then the vector Lulw,*

is related to the vector of nodal point degrees of freedom by

U- 3x3 3x5
.w~j [T] [D] {q} .41)
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in which

cosý -sin4

t[TI sinO cosO 0~ 42)

L0 0 1i

Total Energy of an Element

With use of Eqs. ( 20) and ( 37) for Us; Eqs. ( 23), ( 34), and ( 41)

for W; Eqs. ( 26) and ( 41) for U, and Eqs. ( 30) and (; 34) for T,

one can form the expression for the total "energy" Hi of the ith finite

element

Hi = i - Wi + Uci - i ( 43)

in terms of the nodal point degrees of freedom. The strain energy of the

ith finite element is:

h x5 5x2 1  2x2 f2x5 5xl 2,2

Usi T Lq [B] 2 T 1  [C] [B] {q} +

S2x5 5x1 Ia 2' 44)

+ 2 T 'T [B] {qsxT + 2i

0 J~
The work done by external loads is:

W = LPtPnOj [D] {q} hi + LH,VM [Y] [D] {q} L ( 45)

"The constraint condition "energy" is:

i1 i

23+ XLJ[KB][I[D]{} 6 4Uci 0 L0 [A[]DI~ 6
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and the kinetic energy is:

T. = -(•2/2) LqJ [DIT [M] [D] hi {q} (47)

Note that in Eqs. ( 44), (. 45), and ( 47) the reference axis arc length

increment ds. has been replaced by the nodal point spacing h.. The

Kronecker deltas appearing in Eqs. ( 45) and ( 46) are defined by

6 L 0 if i L i = 1 if i = iL
L L; LL

( 48)

6 = 0 if i # i 60 = 1 if i = i 00 0' 00

in which iL means "i at s = L"; io means "i at s = 0". At the ends

of the beam the energy density is multiplied by one-half the spacing between

adjacent u-nodes.

Local and Global Stiffness and Mass Matrices

12

If the nonlinear term •B in Eq. ( .33a) is neglected, the strain energy Uk

of the kth finite element is simplified:

Uk~ [Lq Ih k[B]T [B]{q} + 2h k TMTJ [B']{qJ

( 49)
5x5.k

[K]

The 5x5 matrix [K] k=h k[B]T [C][B] is called the local element stiffness mat-

rix of the unloaded, undeformed finite element. The (i,j)th member of this

matrix Kk is generated by differentiating Uk with respect to q and qj,

or calculating the second variation of Uk:
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a2Uk Kk. (50)
•qi~qi13

The global stiffness matrix [K] for the entire beam is calculated by assem-

bling or accumulating local element stiffness matrices into a "master" or

global array, as shown in Figure 12. The positions of the filled members

of the global stiffness matrix depend on the numbering scheme used for the

nodal point degrees of freedom. For the simple example of the beam, the nodal

point degrees of freedom are logically numbered in increasing order from left

to right, resulting in compact storage of each 5x5 local stiffness matrix

within the NxN global array, where N is the number of degrees of freedom of

the entire discretized model. As seen from Figure 12, this numbering scheme

results in a global stiffness matrix which is narrowly banded about the main

diagonal. Solving such one-dimensional equilibrium, vibration, or stability

problems on the computer requires much less computer time and storage than

do problems of higher dimensionality.

Figure 13 shows the lower triangular part of a stiffness matrix for a more

complex "branched" one-dimensionally discretized structure. Included in the

matrix are terms of the type K j, indicated by x's, boundary condition

terms of the type

[Q] [KA] [T] [D] .51)

from Eq. ( 46), and juncture condition terms, not yet described, correspond-

ing to stations at which Segment ( is fastened to Segment (" Although

the bandwidth of this stiffness matrix is locally large at structural branch

points, the average bandwidth becomes relatively smaller as the nodal point
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density in the two structural segments is increased, resulting in inexpensive

computer runs.

The local mass matrices

[M]k hk[D]T [M] [D] (52)

are assembled into a global mass matrix, and the local force vectors [Eq.

45)]

{dk histributed(

{FdIk = Lhk t'pnAJ [D] loads (53)

k k boundary or
{F--} L [ D] 6 Lconcentrated (54){Fb =LH,V,MJ T [D •L

Sloads I

are assembled into a global force or "right-hand-side" vector in a manner

completely analogous to that just described in connection with the stiffness

matrix.

If the discretization scheme shown in Figure 11 and specified by Eq. ( 32)

is used for derivation of the mass matrix, this matrix will have the same form

as the stiffness matrix, part of which is shown in Figure 12. In order to

obtain a diagonal mass matrix, one must assign a lumped mass to each dis-

placement degree of freedom. For example, in the interior of the beam shown

in Figure 11, half the mass of element i might be assigned to nodal deg-

ree of freedom ui-1 , half to ui and the full mass to wi. The boundary

and segment junction conditions represented by the matrices [Q] and [D]

in the global stiffness matrix shown in Figure 13 would be filled with

zeroes in the corresponding global mass matrix.
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Equilibrium, Buckling, and Vibration

According to the principle of stationary energy, or minimum potential energy,

a structure is in equilibrium if

D = 0 i = 1,2, ... N ( 55)

where xi represents a nodal degree of freedom or a Lagrange multiplier, and

N is the total number of degrees of freedom in the system including the

Lagrange multipliers. The terms in the global matrices governing equilibrium,

buckling, or modal vibration can be derived by application of this principle

to each finite element of the structural system.

Equilibrium

2

Because of the appearance of $ in Eq. ( 44), Eq. ( 55) represents a sys-

tem of simultaneous nonlinear algebraic equations. These nonlinear algebraic

equations are solved with use of the Newton-Raphson method. The first varia-

tion aH/ xi is expanded in a Taylor series about a known solution, {Xo},

with retention up to linear terms in {Ax} only:

N •2H(xo)
3H/3x. = aH(x + Ax)/axi = DH(xo)/ax + E x Ax. = 0

0 j=l i j A

(56)

i = 1,2 ... N

Equation ( 56) is solved for Axj, j = 1,2, ... N; a new trial solution

{x + AXI is then available; and the solution of Eq. ( 56) with {x0}
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replaced by {x0 + AxI is carried out for a new {Ax}. Iterations continue

until l{Ax/xJl is smaller than some prespecified number. [In the discussion

of the Newton-Raphson method the kinetic energy is assumed to be omitted from

Eq. ( 12).]

Bifurcation Buckling

Figure 14 shows a load-deflection curve with a bifurcation point at (pcr'

HIXoi ), in which lIxoii is a generalized displacement conjugate to the

load pcr"

Since the bifurcation point is on the equilibrium path O-A, it is known

that

3H(xo0)
Hx 0 i = 1,2, ... N (57)
•xi

In order to determine if {x 0 } is a bifurcation point, one must check to

see if

aHx (Xo~b)
b0 0 i 1,2, ... N (58)

xi

where {xbl is a non-trivial infinitesimal buckling mode. Expansion of H

in a Taylor Series about {xo}, as before, yields

20

H(xo) N 92H(xo) b

j+ E b xj + h.o.t. = 0 i = 1,2, ... N ( 59)

i ii
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Since {xo} is an equilibrium state, the first term of Eq. ( 59) is zero,

so that the bifurcation buckling equations become

N a 2H(X) b

b b x 01 1,2, ... N (60)
J=l ax.i ax

bThese equations are linear and homogeneous in x., j = 1,2, ... N. A non-J

trivial solution {x b} exists only for certain discrete values, the eigen-

values, of the matrix

2 b ba H(x 0 )/ax1 ax., i,j = 1,2, ... N ( 61)

General Equations

In order to solve equilibrium and buckling (or vibration) problems, one must

obtain the vector aH(x 0 )/axi, i = 1,2, ... N and the matrix a 2H(x)/x 1i axj,

i,j = 1,2, .:.. N. To derive these quantities one starts from Eqs. ( 44) -

( 47), assuming that the displacement state {q} is given by {q0 + qb},

+= 0 + , where {q b} and 85 are considered to be small compared to

{q0 } and a0l, and the superscript b may signify either a correction to

the trial solution in the Newton-Raphson iterations or a buckling or vibration

modal quantity. One inserts

{q} = {qo + qb}; 0= + + ( 62)

into Eqs. ( 44) - ( 47), then differentiates with respect to xi, which

represents one of the components of the vector {q}. Note that the rotation
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is given by

LýR-j {q 63)

in which CRI is given by Eq. 40).

Dealing with just the first line of Eq. (2.44), assuming that jqj = jq 0 + q b

and making use of Eq. ( 63) for a, one finds that this first line of Eq.

( 44) contributes the following terms to the first variation of H for the

kth finite element:

DH(q 0 +q b h k b] T + _ja2 + ýOýb +_Iýb 2jDq b T Lq 0 +q [B] 0 2 101 [C]

aoKi + 0 R i
x JB i } + , 0

0

64)

IN + Po'i + Ob 1 OJ)[c]

' _1ý2 + ýOýb + 1ýb 21x [B]jq 0 +q b 2 0

0

If one now allows Jq b I -* 0, identifies q b as one of the global displace-
i

ment degrees of freedom xil, and includes terms from Eqs. ( 45) and ( 46)

in the first variation of H, one obtains
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9H(q ) DH(x ) T 1 2 []+ i

b___x o [B] + 0oO [c] {Bi} +
3q 0

+ LNT, MTj {Bi} + hk

I0

(65)

StLPtPn,0{Di} 
hk + LH,V,MJ f[][D]} 6Lk

+ LXOJ{[KA][Y][D]}6k + LJ [K][T][D] 1 k

If x. is a Lagrange multiplier one obtains the same expression as Eq. (.65)
1

except the fourth line in Eq. ( 65) is replaced by

LqoJ {KA]r[I[DId 6 0 + Lqoj [KB] [Y [D 4L ( .66)

The elements in the generalized stiffness matrix a2H(x)/axi axj are derived

in a similar way. The contribution of the first line of Eq. ( 44) to the sec-

ond variation of H is obtained by differentiating the right-hand side of

Eq. ( 64) with respect to qb and allowing {q b} to vanish:
v1



2H(q) h T 1
0 k- Lqo] [B]T + L2o0 [C]

qq=qo

+ ( L~I*+ {BI.oj~c Bi+ .foi1

(67)

+ [LBIJ + LO °io° [C] {B} + j

+ _iij,Oj [C] I {q} +

The right-hand side of Eq. ( 67) can be simplified by combining lines 1 and

4 and lines 2 and 3. Doing so, adding the kinetic energy term derived from

Eq. ( 47), and including the remaining terms from Eqs. ( 44) and ( 46), one

obtains for the second variation of H associated with the kth finite element:

a2H(q0) a 2H(x 0 ) 2Lqo [B]T + 1I2' 01 [C] RijR
'b .b q 0aq.i aqj ax1 ax 1 0

+ (LBi +*Lsoi, + LJ [c] {Bj } ( 68)
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+ hNT k 68

cont'd)

+ rKA][f][D]i] 6 k + [[K,][T][D]]i 6k

+ 022FD]T[M][D]7ij hk

In Eqs. ( 65) and ( 68) subscript and superscript k denotes finite element

number and subscripts i and j refer to degree of freedom numbers the range

of which includes all degrees of freedom associated with the kth finite ele-

ment.

The governing equations for linear and nonlinear stress analysis, buckling

analysis, and modal vibration analysis can be obtained by insertion of the

right-hand sides of Eqs. ( 65) and (.68) into Eqs. ( 56) and (. 60).

Linear Stress Analysis

From Eq. (2.56) it is seen that the global equations governing equilibrium

are

N a 2 H (x) H(x) 69)

j=l ij ax 3 a i
i = 1,2, ... N
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For linear systems the initial deformations {x0 } or {q 0 } are zero and

{Ax} is replaced by {x}, since the A denotes "change from a previous

known solution {x }".

The (i,j)th term of the local element stiffness matrix for the kth fin-

ite element is therefore given from Eq. ( 68) by

K = [LB] [C]{Bj} + NTRiKj hk + Q + Q k ( 70)

in which the range of i and j covers the nodal degrees of freedom asso-

ciated with the kth finite element. [See Figure 11 and Eqs. ( 32), ( 33),

( 36), and ( 37), for example.] In Eq. (: 70) LBI denotes the ith row

of [B]T, {B } the jth column of [B], QiiA the (i,j)th element of the
ji

matrix [KA][T][D], and Q the (i,j)th element of the matrix [KB][T][D].

The ith component of the local force vector corresponding to the kth finite

element is given from Eqs. (. 65) and ( 69) by

Fki H~Mý{B } + LPt'pn'9Q1{D i}3 h k + LH,v,mj f{[T][D]~ I(L 71)

in which the range of i covers the nodal degrees of freedom associated with

the kth finite element. The linear stress analysis problem is formulated by

assembly of the terms K.. of the local finite element stiffness matrices
1j

into the global stiffness metrix [K] and assembly of the components Fik

of the local force vector into a global force vector {F}, yielding the

global linear equation system

[K]{x} = {F} (72)
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Bifurcation Buckling and Modal Vibration Analyses

Bifurcation buckling and modal vibration are governed by Eq. ( 60). The

matrix of coefficients, 2 H(xo)/axbaxb, i,j, = 1,2, ... N can be derived

from Eq. ( 68).

The terms in Eq. ( 68) have the following physical significance: The first

line represents the work done by the prebuckling (or pre-vibration) stress

and moment resultants, shown in Figure 15, during infinitesimal buckling

b
or vibration modal rotation, b These stress and moment resultants are

given by

LN ,MJ I (qoJEB ]T + Lo20j3[C]73

(Note that the prebuckling moment resultant M does not enter the buckling

equations because the second term in the vector iRK.,0J is zero. This

follows directly from the linearity of the assumed kinematic relationship

( 16b) between the change in curvature K and the displacement components

u and w. The second line in Eq. ( 68) represents a contribution to the

stiffness matrix of the structure as deformed by the loads. The amount of

deformation is given by ao" The third line represents a contribution to

the work done by the thermal stress resultants during buckling or vibration

modal rotation ýý The fourth line represents the constraint conditions.

The last line represents a contribution to the mass matrix and the asso-

ciated modal vibration eigenvalue 2

Unlike the case for linear stress analysis, described in connection with

Eq. ( 70), the case of bifurcation buckling or modal vibration in the
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presence of prestress involves initial deformations. The expression for the

stiffness matrix is therefore somewhat more complicated. The (i,j)th term

of the local element stiffness matrix [K1 ]k for the kth finite element is

given from Eq. ( 68) by

k 0 RIj [= A k B kKlij +i]+ Lji,O• [C] {Bj} + +Qij o Qij L

(74)

in which the range of i and j covers the nodal degrees of freedom associ-

ated with the kth finite element and the other terms are defined as before in

connection with Eq. ( 70). Equation ( 74) should be compared to the simpler

expression ( 70) for the linear stress analysis.

Bifurcation Buckling: The (i,j)th term of the local element "load-

geometric" matrix [K2 ]k for the kth finite element arises from the first

line of Eq. ( 68):

Kik LO = NR.R. ( 74a)K2ij 0 o'o= No i

where LN,M 0 1 are given by Eq. ( 73). In cases for which the temperature

rise is regarded as an eigenvalue, that is one wishes to find buckling temp-

eratures, the term NTRiRi which in this presentation contributes to the
• lk

stiffness matrix [K1] would instead appear in the "load geometric" mat-

rix [K2 ] k
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The global bifurcation buckling problem is formulated by assembly of the
k

terms Kli of the local finite element stiffness matrices into the global
lii

k
stiffness matrix [K1 ] and assembly of the terms K2i of the local finite

element load-geometric matrix into the global load-geometric matrix [K 2 ],

yielding the global bifurcation buckling problem

[K1I{xb} + 1[K 2 ]{xb} 0 75)

In Eq. ( 75) X is a load factor to be multiplied by whatever the prestress

distribution in [K2 ] is. This distribution may, of course, vary along the

reference surface.

Note that the effect of prebuckling rotation o which usually varies with

the loading, has been assembled into the stiffness matrix [K1 ] rather than

into the load-geometric matrix [K2 ]. This is not a rigorously correct

-procedure. If 8o varies with the buckling load, as is usually the case,

the eigenvalue problem assumes the general form

[Kl]{x} + X[K 2 ]{x} + x2 [K3 ]{xl = 0 (76)

However, experience with difficulties associated with the extraction of

eigenvalues of such quadratic systems has led to implementations in computer

programs in which the loading is divided into two parts, a fixed part and an

"eigenvalue" part. The prebuckling rotations 80 associated with the fixed

part are retained by inclusion of the 8 in the stiffness matrix as in

Eq. ( 74). The prebuckling rotations associated with the part of the load-

ing to be multiplied by the eigenvalue X are neglected, leading to a load-
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geometric matrix generated only from prebuckling stress resultants, as in

Eq. ( 75). Bifurcation buckling loads for systems in which prebuckling

rotations B° are important are calculated through a converging sequence

of eigenvalue problems in which the fixed part of the load becomes very large

compared to the "eigenvalue" part of the load. An example of this type

will be discussed later.

Modal Vibrations: The stiffness matrix for the modal vibration of a pre-

stressed structure is given by

[Kvib] = [K1 ] + [K2 ] ( 77)

with KI and K2 derived as just described. The mass matrix is derived in

a straightforward manner from the last line of Eq. ( 68). The global modal

vibration eigenvalue problem takes the form

[Kvib]{X} + Q2[M vib]{X} = 0 (78)

with [K vib] given by Eq. ( 77).
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SECTION 3

ANALYSIS OF SHELLS OF REVOLUTION

The importance of this class of structures is attested to by the numerous

computer programs that have been written for analysis of stress, buckling and

vibration of axisymmetric shells.

Computer Programs

In Figure 16 the names of computer programs or their authors are located

in a space with coordinates that measure complexity of geometry versus gener-

ality of phenomenon. Each name indicates the capability of the corresponding

computer program to perform the analysis indicated by the intersection of

these coordinates. In this coordinate system increasingly general-purpose

computer codes lie increasing distances from both axes. Other codes, exist-

ing just outside of the region depicted, apply to structures that are t almost'

shells of revolution, such as shells with cutouts, shells with material prop-

erties that vary around the circumference, or panels of shells of revolution.

The region shown in Figure 16 is divided by a heavy line into two fields:

Programs lying within the heavy line are based on numerical methods that

are essentially one-dimensional, that is, the dependent variables are separ-

able and only one spatial variable need be discretized; programs lying out-

side the heavy line are based on numerical methods in which two or more spa-

tial variables are discretized. It is generally true that analysis methods
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and programs lying outside the heavy line require perhaps an order of magni-

tude more computer time for a given case with given nodal point density than

do those lying inside the line. This distinction arises because the band-

widths and ranks of equation systems in two-dimensional numerical analyses

are greater than those in one-dimensional numerical analyses. Certain of

the areas in Figure 16 are blank. Those near the origin correspond in

general to cases for which closed-form solutions exist and for which slightly

more general programs are clearly applicable. The blank areas lying near

the outer boundaries of the chart are for the most part covered by more

general programs such as NASTRAN, SPAR, STAGS, STRUDL, ASKA, MARC, ANSYS,

and other general-purpose programs described in Ref. [ 24].

As of 1980 the most commonly used computer programs for complex shells of

revolution are those by Cohen [ 1], Kalnins [ 2], Svalbonas [ 3], and

Bushnell [ 18], [ 25]. A typical summary of the capabilities of such pro-

grams is listed in Table 1. In general the shell-of-revolution codes repre-

sent implementation of three distinct analyses:

1. A nonlinear stress analysis for axisymmetric behavior of axisymmetric

shell systems (large deflections, elastic or elastic-plastic).

2. A linear stress analysis for axisymmetric and nonsymmetric behavior of

axisymmetric shell systems submitted to axisymmetric and nonsymmetric

loads.

3. An eigenvalue analysis in which the eigenvalues represent buckling

loads or vibration frequencies of axisymmetric shell systems submitted
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to axisymmetric loads. (Eigenvectors may correspond to axisymmetric

or nonsymmetric modes.)

Some of the codes 1 1, .18] have an additional branch corresponding to

buckling of nonsymmetrically loaded shells of revolution. In the BOSOR4

program [ 18] this branch is really a combination of the second and third

analyses just listed.

Advantage of Axisymmetric Geometry: Separation of Variables

The great advantage of the computer programs cited above is their effi-

ciency. This efficiency derives from the fact that for the three types of

analysis just listed the independent variables can be separated and an analyt-

ically two-dimensional problem thus reduced to a numerically one-dimensional

model. Such a model leads to compact, narrowly banded stiffness, load-geo-

metric, and mass matrices, as we have seen from the beam analysis of the pre-

vious section. The reduction of these matrices for solving equilibrium and

eigenvalue problems is performed speedily on the computer.

For example, the independent variables of the BOSOR4 analysis [ 18] are the

arc length s measured along the shell reference surface and the circumfer-

ential coordinate 0. The dependent variables are the displacement compon-

ents u, v and w of the shell wall reference surface. For the three types

of analyses listed above it is possible to eliminate the circumferential

coordinate a by separation of variables: in the nonlinear stress analysis

0 is not present; in the linear stress analysis the nonsymmetric load system

is expressed as a sum or harmonically varying quantities, the shell response to
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each harmonic being calculated separately; and in the eigenvalue analysis the

eigenvectors vary harmonically around the circumference. Buckling under non-

symmetric loads is handled by calculation of the nonsymmetric prestress dis-

tribution from the linear theory and establishment of an eignevalue problem

in which the prestress distribution along a given meridian, presumably the

meridian with the most destabilizing prestress, is assumed to be axisymmetric.

Thus, the 0-dependence, where applicable, is eliminated by the assumption

that displacements u(s,e), v(s,O), w(s,O) are given by u n(s)sinno,

vn(s)cosne, wn(s)sinno, or by un(s)cosno, vn(s)sinne, wn(s)cosne.

The advantages of being able to eliminate one of the independent variables

cannot be overemphasized. The number of calculations performed by the com-

puter for a given nodal point spacing along the arc length s is greatly re-

duced, leading to significant reductions in computer time. Because the numer-

ical analysis is "one-dimensional" a rather elaborate composite shell structure

can be analyzed in a single "pass" through the computer. The disadvantage is,

of course, the restriction to axisymmetric structures.

Energy Formulation - A Summary

The following analysis of a segmented, ring-stiffened shell of revolution is

similar to that for the beam given in te previous section. It is based on

energy minimization with constraint conditions. The total energy of the sys-

tem involves (1) strain energy of the shell segments U , (2) strain energy

of the discrete rings Ur5 (3) potential energy of the applied line loads

and pressures U , (4) kinetic energy of the shell segments T , and (5)

kinetic energy of the discrete rings T . In addition the total energy

r
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functional includes constraint conditions U C arising from (1) displacement

conditions at the ends of the composite shell, and (2) compatibility condi-

tions between adjacent segments of the composite shell.

These components of energy and the constrairtconditions are initially integro-

differential forms. They are then written in terms of the shell reference sur-
and w. and Lagrange multi-

face nodal point displacement components ui, V i 3.

pliers X.. The integration along the reference surface meridian is performed
1

numerically. Now an algebraic form, the energy is minimized with respect to

the discrete dependent variables, ui, VV Wi. and X i*

In the nonlinear stress analysis the energy expression has terms linear, quad-

ratic, cubic, and quartic in the dependent variables. The cubic and quartic

terms arise from the "rotation-squared" terms which appear in the constraint

conditions and in the kinematic expressions for reference surface strains el,

e V and e 12* Nonlinear material properties (plasticity) are not included

here. For details on plastic buckling the reader should consult Ref. [ 261.

Energy minimization leads to a set of nonlinear algebraic equations which

are solved by the Newton-Raphson method. Stress and moment resultants are

calculated in a straightforward manner from the mesh point displacement compon-

ents through the constitutive equations (stress-strain law) and kinematic

(strain-displacement) relations.

The results from the nonlinear axisynmetric stress analysis are used in the

eigenvalue analyses for buckling and vibration. The "prebuckling" or "pre-

stress" meridional and circumferential stress resultants N 10 and N 20 and

the meridional rotation ý 0 appear as known variable coefficients in the

energy expression which governs bifurcation buckling and modal vibration.
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This bifurcation buckling or modal vibration energy expression is a homogeneous

quadratic form. The values of a parameter (load or frequency) which render the

quadratic form stationary with respect to infinitesimal variations of the depend-

ent variables represent buckling loads or natural frequencies. These "eigen-

values" are calculated from a set of linear, homogeneous equations.

Similar linear equations, with a "right-hand-side" vector added, are used for

the linear stress analysis of axisymmetrically and nonsymmetrically loaded

shells. The "right-hand-side" vector represents load terms and terms due to

thermal stress. The variable coefficients NI0, N20 and B° mentioned above

are zero, of course, since there is no nonlinear "prestress" phase in the linear

nonsymmetric equilibrium analysis.

Basic Assumptions

The assumptions upon which the following analysis is based are:

(1) The wall material is elastic and behaves linearly.

(2) Thin-shell theory holds; i.e., normals to the undeformed surface remain

normal and undeformed. Transverse shear deformation is neglected.

(3) The structure is axisymmetric, and in vibration analysis and nonlinear

stress analysis the loads and prebuckling or prestress deformations are

axisymmetric.

(4) The axisymmetric prebuckling deflections in the nonlinear theory, while

considered finite, are moderate; i.e., the square of the meridional

rotation can be neglected compared with unity.
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(5) In the calculation of displacement and stresses in nonsymmetrically

loaded shells, linear theory is used. This analysis is based on stan-

dard small-deflection analysis.

(6) A typical cross-section dimension of a discrete ring stiffener is small

compared with the radius of the ring.

* (7) The cross-sections of the discrete rings remain undeformed as the struc-

ture deforms, and the rotation about the ring centroid is equal to the

rotation of the shell meridian at the attachment point of the ring.

(8) The discrete ring centroids coincide with their shear centers.

(9) If meridional stiffeners are present, they are numerous enough to in-

clude in the analysis by an averaging or 'smearing' of their properties

over any parallel circle of the shell structure.

(10) The shell is thin enough to neglect terms of order t/R compared to

unity, where t is a typical thickness and R a typical radius of

curvature.

(11) Prebuckling in-plane shear resultants are neglected in the stability

analysis.

(12) The integrated constitutive law is restricted to the form given in Eq.

( 84). For example, any coupling between normal stress resultants and

shearing and twisting motions is neglected.
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Energy Components and Constraint Conditions

The various components of the energy (U s,U ,U p, T sT r) and the constraint

conditions U are derived in this section. The energy is derived for a

typical discrete ring. The total energy is obtained by summation over all

shell segments and all discrete rings.

Shell Strain Energy

A shell element is shown in Figure 17. The strain energy in the shell

wall is

U s if f f {Jap(e - otT) + 02(£2 - a 2 T) + r12 12 rdzd~ds (79)
sOz

which is analogous to Eqs. ( .13) for the beam.

For an orthotropic wall material

111 = [ El 12 {F 12a1 
( 80).a2 E 2 E 22 0 E;2 a2T

T 12 , 0 G 12

in which

Ell E1/(l -V1 2 v 2 1 ); E2 2  = E2 /(I - v1 2 v 2 1 )

(81)

E12 v E122

46



In Eqs. ( 79) and ( 80) subscript 1 refers to the meridional coordinate

direction and subscript 2 refers to the circumferential coordinate direc-

tion. As with the beam analysis, T is the temperature rise above the zero

stress state. The coordinate z along the normal to the reference surface is

measured outward from an arbitrary reference, not necessarily from the middle

surface.

If "normals remain normal" and undeformed (a classical thin shell theory

approximation), the strains as functions of the thickness e (Z), E2 (z), and

Cl2(z) can be expressed in terms of reference surface strains el, e 2 , and

e12 and changes in curvature KI, K2 , and K 1 2 , thus

C1 = e1 - ZKl 2 , £2 = e2 - ZK2 , =1l2e12 + 2ZK1 2  ( 82)

It is convenient to perform the z integration in Eq. ( 79) at this point.

The following definitions of stress and moment resultants are required:

N 1 faldz N2  fa2dz N1 2 = f' 1 2 dz

(83)
M 1 -fa1 dz M2 = -fa 2zdz M1 2 = -12•zdz

These stress and moment resultants are shown in Figure 17. Substitution of

Eqs. ( 80) with Eqs. ( 83) yields
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N1  C11  12 O C1 4  15 e1  N

N2  C1 2  22 24 25 e NT

N12 0 0 C33 0 0 C3 6  e12 + 084)

c C c 0 C C 0KMT
114 24 44 45 K1  M1M1 C4 C2 0 C4 C4 0 KI M T

2 1 5  25 0 C45 55 0 K2  MT

CM2 0 0 C3 6  0 0 C66 2K 12' 0

in which the C.. are given by1J

Cl fElldz C1 2  fE 1 2 dz C1 4  -fEllzdz

C1 5  -fE 1 2 zdz C2 2  fE 2 2 dz C2 4  -fE 1 2 zdz

(85)
C2 5  = -fE 2 2 zdz C3 3  = fGdz C3 6  = fGzdz C6 6  = fGz 2 dz

C4 4  = fEllz2 dz C45 = fE1 2z
2dz C5 5  fE 2 2 z 2 dz

T T T T
and the thermal resultants N1 , N2 , MV, M2  are given by

TN1 - + ElI
N1 = f(E 11 ~T +E 12 a2T)dz

T

NT = -(E 1 2cT + E22 2T)dz

(86)
T

M1 = f(E 11LcT + E1 2 2 T)dz

T
M2 = f(E12alT + E2 2 a 2 T)dz

The thickness coordinate z is measured from the arbitrary reference surface

outward. The integrations through the thickness in Eqs. ( 85) and ( 86) can

be performed explicitly for layered shells with material properties constant
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through the thickness of each layer, or: numerical integration can be performed

(e.g., Simpson's rule) for layered shells with temperature-dependent material

properties. Equations appropriate for laminated composite wall construction

are given later.

Equations ( 80) and ( 82) are analogous to Eqs. ( 18) and ( 15), respect-

ively, for the beam analysis. The C and NT, NT, MIT M2T in Eqs. ( 84)
i N1, N2, 1P 2

( 86) are analogous to similar quantities in Eqs. ( 20) and ( 21).

Using Eqs. ( 82), ( 83) and ( 86), one can write the shell strain energy in

Eq. ( 79) in the form

= sJe + LNTI{el.+C(T)rdOds 87)

in which

LsJ LN2,NI2 N 2,2MlM2 ,Ml2J

e} = eT Lel, e2, e12K12

NT TNT T TT

SN20 1,M 201

and C(T) is a function of the shell parameters and temperature rise only.

Therefore it can be dropped. Since

Ls I= ST = [tiC] {e} + {NTJT

- LeJ EcIT + [ ( 88)

- Le I .c] +L



substitution of Eq. ( 88) for LSI and the dropping of C(T) in Eq. ( 87)

leads to

6x6 6x1

U ½f Lel[Clfe} +2L T{e}. rdeds (89)

which is analogous to Eq. ( 20) for the beam.

Strain-displacement and curvature-displacement relations valid for moderately

large relations are

* 1 +u'+ W/R1 +(W 2 + y2)

*e2 v/r + ur'/r + w/R2 + 2( + y2)

{e} el 2  - u/r + r(v/r)' + 90)
K1 $'

K2  R/r + r'•/r

2K 1 2  2(-A/r + r'V/r + v'/R 2)

in which

w' -u/Rl, = w/r - v/R2

91)

i= ½(i/r - v' - r'v/r)

Dots indicate differentiation with respect to the circumferential coordinate

0; primes indicate differentiation with respect to the meridional coordinate

s. Positive values of u, v, w, 8, *, and y are shown in Figure 17.

The quantities R1 and R2 are the meridional and normal circumferential

radii of curvature. Equations ( 90) and ( 91) are of the Novoshilov-Sanders
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type [ 10, 11]; they are analogous to Eqs. ( 16) and ( 17) for the curved

beam. The same equations form the theoretical basis for Cohen's computer pro-

gram [ 1].

Discrete Ring Strain Energy

Figure 18 shows a ring cross section with displacements u, vc, Wc, S of

the centroid and applied loads V, S, H, M. The ring cross-sectional area A

is greatly exaggerated relative to its centroidal radius r . The centroidc

and the shear center are assumed to coincide and plane normal sections are

assumed to remain plane and normal during deformations. In the absence of

warping, the ring strain energy is given by

Ur (re/2) f f ar(er - arT)dAde + J(GJ/rc) f (A + Uc/rj 2 do (92)
c A e

in which A is the ring cross-section area and GJ is the torsional rigid-

ity.

The ring hoop stress is given by

a r Er( - arT) ( 93)

The hoop strain C r can be expressed as a function of strain of the centroidal

axis plus terms due to in-plane and out-of-plane curvature changes K and K,

respectively:

Sr er - xKx +yK ( 94)
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Substitution of Eqs. ( 94) and ( 93) into Eq. ( 92), integration over the

ring area, and the dropping of the term which contains only ring parameters

and temperature, leads to the following expression for the ring energy:

U (r/2 e 2EA + K2E I + K2 E I - 2K K E I
r c)frr x ry yrx xyrxy

+ (GJ/r 2 ) (; + Uc/rc)2 (95)

+ 2 erN + KM + KYMTjdo

in which

T _
r -fErarTdA

96)

MT +fErarTXdA MT -fEra TydAY x

The ring kinematic relations are

e V/r + wc/r + ½(ý2 + Y2)
r c c c rc+ ( c yc

K z - /rc

Ky -y/r + /r ( 97)

ycc v c )rc'K (Wc - V)/re

Yc = u/rc

Equations ( 92) - ( 97) are analogous to Eqs. ( 79) - ( 91) for the shell.
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Potential Energy of Mechanical Loads

Two types of loads are permitted in the analysis: line loads and moments V,S,H

and M, which act at ring centroids and at shell segment boundaries, and surface

tractions p1 ,P 2 and pressure p3 . These loads are shown in Figures 17 and 18. The

potential energy associated with constant-directional line loads at a given ring

station is

U = -f (- vu + sv + Hw + Ma)rde ( 98)

The potential energy associated with constant directional surface tractions p1

and p 2  and pressure p 3  is

Up2  = -f f (plu + p 2 v + P 3w)rdeds (99)
se6

These equations are analogous to Eq. ( .22) for the beam. Additional terms re-

quired to account for following or "live" loads are introduced later.

Kinetic Energy of Shell Segment

The kinetic energy of the shell segment is given by

T = ½ff m(u 2 t + v2 + w ( 00)
Ss ,t ,t)rdds

in which ( ) denotes differentiation with respect to time. The shell

rotatory inertia in neglected.
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Kinetic Energy of Discrete Ring

The kinetic energy of a discrete ring stiffener is given by

T ( /2 f uA(U 2 + 2 +
r r c e c t c,t c,t-

( 101)

+ I2t + I2 + Ic 2 t + 21s Y do

in which I p)Jslnilsn are cross-sectional area moments of inertia relative

to axes normal and tangential to the shell meridian at the ring attachment

point. In the case of harmonic oscillations, the differentiations with respect

to time are replaced by a factor R, which is a frequency parameter. Equations

( 100) and ( 101) are analogous to Eq. ( 28) for the beam.

Constraint Conditions

Figure 19 shows a meridional discontinuity (+,-) between two adjacent shell

segment reference surfaces and discontinuities at shell edge support points

"A" and "B". The compatibility conditions for the junction are

,** *+ *

u = u + Au v = v + Av

102)

w = w +Aw =

in which

Au (d 1 8 + d2 2/2)
* * .*-- *_~ -*.

AV- (d1 + Aw )(w - v )/r- - (d 2 + Au )u-/r- 103)

Aw = 2a - d1 2/2
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The constraint conditions ( 102) arise from the requirement that the motion

of the point (+) relative to the point (-) involves no deformation of a

line joining the meridional gap (+,-) and compatibility of meridional rota-

tion a across this (+,-) gap is enforced.

At a support point the terms u ,v , and w in Eqs. ( 102) are con-

strained to be zero if the appropriate boundary condition integers KAl,KA2 ,

etc., and IBi'KB2' etc (see below), are equal to unity. The constraint con-

ditions ( 102) are incorporated into the total system energy by the introduc-

tion of four Lagrange multipliers X 2,x3, and X4 for each edge support

and each segment junction. Thus, the "energy of constraint" corresponding

to each junction has the form

u*+ ,_

u - u - Au

v+ - v - Av
U = L•'2 1 ' (* ~-AC104)Uc I'1.,x 2'x3'X4 *+ 104

L w - w - Aw*

+

At the shell ends the constraint conditions have the following forms:

at end point "A"

-u - Au

-v - Av

U =L . --'KAm* K3*13K*4 * - Aw (105a)
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at end point "B"

-u - Au

-v - Av
U = LY_ • [•*XI'KBm*xm'$KB3*'3'K-B4*'41 -_ - (105b)
uc -w - Aw(15b

These equations are analogous to Eqs. ( 26) for the beam.

Variable Transformations

The components of energy of the system are represented by the shell strain

energy UUs [Eq. ( 89)), the strain energy of a discrete ring Ur [Eq.

( 95)], the potential energy of line loads Upl and surface tractions

Up2 [Eqs. ( 98) and ( 99)], the shell kinetic energy Ts [Eq. ( 100)],

and the discrete ring kinetic energy Tr [Eq. ( 101)]. The constraint

conditions U are given by Eqs. ( 104) and ( 105).c

It is desired to express all energy components in terms of the shell refer-

ence surface displacements u, v, and w. The displacements uc, Vc, and

wc of the ring centroid (Figure 18), which appear in Eqs. ( 95), ( 97),

( 98), and ( 101), are given by

u = u + Au v = v + Av w =w + Aw (106)cc c

The quantities Au , Av , and Aw are given by Eqs. ( 103) with d and

d2 replaced by e1  and e2, the ring eccentricity components (Figure 18),
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*_~ *_ *_
and u ,v ,w ,r replaced by the displacement components and radius

u ,v ,w ,r which correspond to the ring attachment joint. The axial, cir-

cumferential, and radial displacement components u ,v , and w , which

appear in Eqs. ( 102) - ( 106), are given by

u ur/R2 - wr' v = v w = ur' +wr/R ( 107)

which is analogous to Eq. ( 42) for the beam.

Eqs. ( 106) and ( 107) can be used to eliminate ucv cWc and u ,v , and

w from the energy components and constraint conditions. The dependent var-

iables are then u,v,w and the Lagrange multipliers Xl1 ,X2 ,X 3 , and X4"

The total energy in the system is obtained by summing over all shell segments,

discrete ring stiffeners, Junctions and boundaries.

Separation of Variables

The dependent variables u,v, and w are functions of arc length s and

circumferential coordinate 0. The e dependence can be eliminated from

the analysis by the assumption that

n n
max max

u(s,e) = UO(s) + I Unl(s) sinne + I un2(s) cosne
n=nmin nmin

v(s,e) v nl (s) cosno + vn2 (s) sin In ( 108)

n n

w(s,8) W 0 (s) + [ w nl(s) sinno + I wn 2 (s) cosno
n n
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The temperature distribution, surface tractions and pressures, and thermal and

mechanical line loads have similar expansions, which are given explicitly later.

If the expressions ( 108) were inserted into the energy components just de-

rived, all the harmonics would couple in the analysis, since the kinematic

relations ( .90), (. 97), and ( 103) are nonlinear.

In the analysis, large deflections are permitted in the axisymmetric components,

but the nonsymmetric harmonics are considered to be small. The various harmon-

ics do not couple, and a solution for each u n(s), Vn (s), and w (s) can be

obtained with the circumferential wave number n appearing as a parameter in

the analysis. The 6 integration indicated in Eqs. ( 89), (. 95), and ( 98) -

(101) is replaced by a factor of 7 for n # 0 and 27 for n = 0. In a

linear stress analysis for nonsymmetrically loaded shells, the static response

of a shell to arbitrary varying loads is obtained by superposition. (In this

case, even the axisymmetric components are assumed to be small.) In buckling

and vibration analyses the "small" deflections unlvnl ,wnun2,vn2,wn2 are

considered to be kinematically admissible variations from the "prebuckled" or

"prestressed" axisymmetric state represented by the large deflections u (s)
0

and w (s) in Eqs. ( 108). The u (s) and w (s) are determined in the

nonlinear stress phase of the analysis by Newton-Raphson iterations, as de-

scribed in the discussion associated with Eq. ( 56).

In the linear analysis for nonsymmetric behavior and in the buckling and vibra-

tion analyses, the second summations in Eqs. ( 108) can be represented by zero

or negative values of the circumferential wave number, n.
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Dis cretization

The 0 dependence has been replaced with a parameter n, so that only one

independent variable remains--the arc length s. Figure 20(a) shows a shell

meridian of two segments, and Figure 20(b) shows a discretized model. The

continuous variables u(s), v(s), and w(s) are replaced by discrete varia-

bles ui, vi, and wi. The ui and vi occur at stations midway between

the wi in a manner analogous to the discretized beam model shown in Figure

11. With constant nodal point spacing within each shell segment, as shown

in Figure 20(b), the energy is evaluated at the mesh points where the wi

are located. The displacements and the s derivatives required in the energy

are

U (ui + ui_9)/2, v = (vi + vil)/2

u' = ((ui - ui_l)/h, v' = (vi - Vil)/h
1 ( 109)

w = wi, w' = (wi+l - Wi- 1 )/2h,

w"i= (wi+I - 2 wi + wil)/h 2

in which h is the mesh point spacing. These expressions are analogous to

Eqs. ( 32) for the beam.

If the nodal point spacing varies within a shell segment, the expressions for

u, v, u', and v' remain as given in Eqs. ( 109), but the three-point formulas

for w, w',, and w"t become



w a11  a1 2  a1 3  wil 1

W1 a21 a22 a23 wi 110)

a31 a32 a33 i+1

in which

2al 1  = (h - k)(3k + h)/[16(h + hk)]

a1 2 = (h + 3k)(3h + k)/(16hk)

a 1 3  (k - h)(3h + k)/[16(k2 + hk)]

a2 1 = -1/2h a 2 2 = (1/2h - 1/2k) a 2 3 = 1/2k (i11)

a3 1 = 2/[h(h + k)]

a 3 2 = -2/(hk)

a 3 3 = 2/[k(h+k)]

The quantities h and k are defined in Figure 21.

Finite-Difference Energy Method vs. Finite Element Method

The discretization technique just described has been called the "finite differ-

ence energy method". This method is described in detail and compared to the finite

element method in Ref. [ 19]. Figure 21 shows a typical shell segment meridian with

variable nodal point spacing. As in the case of constant nodal point spacing

shown in Figure 20, the 'u' and 'v' points are located halfway between

adjacent 'w' points. The energy contains up to first derivatives in u and

v and up to second derivatives in w. Hence, the shell energy density eval-

uated at the point labeled E (center of the length k) involves the seven

points wi_ 1 through wi+I. The energy per unit circumferential length is

simply the energy per unit area multiplied by the length k of the finite-differ-
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ence element, which is the arc length of the reference surface between two

adjacent u or v points. This formulation yields a (7 x 7) local element

stiffness matrix corresponding to a constant-strain, constant-curvature-

change finite element that is incompatible in normal displacement and rota-

tion at its boundaries but that in general gives very rapidly convergent re-

sults with increasing density of nodal points. Note that two of the w-points

lie outside of the element. If the mesh spacing is constant, the algebraic

equations obtained by minimization of the energy with respect to nodal degrees-

of-freedom can be shown to be equivalent to the Euler equations of the varia-

tional problem in finite form [ 19]. Further description and proofs are

given later and in Ref. [ 19].

Figures 2 and 22 show rates of convergence with increasing nodal point

density for a poorly conditioned problem--a stress analysis of a thin, non-

symmetrically loaded hemisphere with a free edge. The u and w displace-

ment components at 0 = 0 are plotted in Figure 1. The finite-element

results indicated in Figure 2 were obtained by programming various kinds of

finite elements into the BOSOR4 program [ 18]. The computer times for compu-

tation of the stiffness matrices K1 are shown in Figure 22. A much smaller

time for computation of the finite-difference K1 is required than for the

finite element K1 because there are fewer calculations for each 'Gaussian'

integration point and because there is only one 'Gaussian' point per finite-

difference element. Other comparisons of rate of convergence with the two

methods used in BOSOR4 are shown for buckling and vibration problems in Ref.

[ 19].
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Energy Functional Converted to Algebraic Form

With the substitution of Eqs. (2.108) in the various energy components and con-

straint conditions, the replacement of s derivatives by Eqs. ( 109) or ( .110),

the replacement of time derivatives by a frequency parameter ip, and the num-

erical integration over s and exact integration over 0, the system energy

and constraint conditions are now represented by an algebraic form which con-

tains as dependent variables ui, vi, and wi and the Lagrange multipliers X1,

X2, X3' and X4  (for each junction and boundary). The algebraic form also

contains as parameters the shell and ring properties, the loads and temperature,

and the frequency parameter 2.

Stress, Buckling, and Vibration Analyses - A Summary

Nonlinear Stress Analysis

In the nonlinear stress analysis only the axisymmetric components of the load

are considered and only u (s) and w0 (s) in Eqs. ( 108) are nonzero. Terms

linear through quartic appear in the algebraic form for the total energy, as

with Eq. ( 44) in the beam analysis. The simultaneous nonlinear algebraic

equations obtained by energy minimization with respect to the nodal point

displacement components uoi and woi and Lagrange multipliers X°. are solved

by the Newton-Raphson method, as described in the discussion associated with

Eq. ( 56). The coefficient matrix for each iteration is symmetric and is

strongly banded about the main diagonal. Such narrowly banded systems can be

solved in a matter of seconds of computer time. For example, a BOSOR4 case

with about 200 degrees of freedom requires somewhat less than about 2 seconds
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per iteration with double precision on the UNIVAC 1108 computer. The number

of iterations required depends on how nonlinear the problem is. Generally,

less than about five iterations are needed for convergence at a given load

level.

A reasonable convergence criterion for the nonlinear prebuckling solution at

each load step is that successive values of all uio, wio greater than a

tenth of the largest displacement be different by less than 0.4% of their

absolute values. The starting vector for the first iteration at the first

load value is zero, which means that the first solution represents the linear

theory solution. The starting vectors for the first iterations at subsequent

load values are the converged solutions obtained at the loads immediately

preceding the current load. Once the displacements u. and w. have10 10

been calculated, the reference surface strains and stress resultants are

obtained in a straightforward manner by means of Eqs. (. 84) and ( 90).

Bifurcation Buckling and Modal Vibration

In the buckling and vibration analyses the symmetric and nonsymmetric dis-

placement components contained in the summations indicated in Eq. ( 108)

are considered to be infinitesimal, kinematically admissible variations of

the displacements from the "prebuckled" or "prestressed" state obtained in

the nonlinear stress analysis described above. Since the "buckling" dis-

placements un, vn, and wn are infinitesimal, one need only retain linear

terms in un, v , and w in the kinematic relations and constraint con-n

ditions. However, it must be remembered that the displacements and rela-

tions in Eqs. ( 90) to ( 106) represent the total displacements from
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the undeformed state. Hence, cross-product terms such as w'w' obtained by
on

insertion of Eqs. ( 108) [with the use of Eqs. ( 91) and ( 109)] into Eqs.

( 90), for example, must be retained. The energy minimization in the buckling

and vibration analyses is performed with respect to un, vn, wn and the'Lagrange

multipliers.

The buckling and vibration analysis is described in detail below. Here it is

sufficient to point out that the energy expression on which the numerical analy-

sis is based is a homogeneous quadratic form. The form is stationary with re-

spect to the dependent variables un, vn, Wn and the Lagrange multipliers X

for certain discrete values of a parameter--the so-called eigenvalues. The

eigenvalue parameter can be a load or load ratio, a temperature, or a frequency.

Linear Equilibrium for Nonaxisymmetric Loading

The linear stress analysis is based on the same equations as the stability and

vibration analysis, except that the "prestress" terms which appear in the sta-

bility and vibration quadratic form are not present, and the gradient of the

energy functional is not homogeneous, since a "right-hand-side" vector is

nonzero. This vector arises from the thermal terms in Eqs. ( 89) and ( 95)

and the load terms in Eqs. ( 98) and ( 99).

Corresponding to the nonsymmetric portions of u(s,O), v(s,e), and w(s,e)

given in Eqs. ( 108), the temperature rise distribution T, surface trac-

tions pI P23' and pressure p3 5 mechanical line loads V, S, H, M and

T T Tthermal line loads N r, My x have the following expansions:
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T(s,6) T Tnl(s)sinne + I T(n2(s)cosnO
n n

pl(s,O) = plnl(s)sinnO + I p ln 2 (s)cosne
n n

P2 (SP) I. P2nl(s)cosne + I p2n 2 (s) sinne
n n

P3 (s,e) = P 3 nl(S)Bsinfn + p P3n2 (s)cosnO
n n

V(6) I n Vnsinne + V cn2cosnO
n n

S(e) = n SnCos ne + S n2sinnO ( 112)
n n

H(e) - H ni sin ne + H •n2cos nO
n n

M(6) M ni sinnO + I n2cos nO

n nN T( e NM sinnO + N T cos nO

1( = ni n2

n n

MT(0) = MTnSinne + j MT2 cos nONr N e T 1sin nO + MTcsn

n n

=in whichn N+ MTMTT

in which N ' M. and MT are given by Eqs. ( 96). As with Eqs. ( 108),
x

the first summations on the left-hand-side correspond to positive or zero n

and the second summations to negative or zero n.
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Energy in Terms of Nodal Degrees of Freedom

Strain Energy of Shell Segment

For constant nodal point spacing the shell reference surface displacement

components u, v, w can be written in terms of the nodal displacements in

the form Iu 307
= [D] {q} 113)

in which

3x7 0 1/2 0 0 1/2 0 0

[D] = 0 1/2 0 0 1/2 0 (114)

a 0 0 1 0 0

and

LqJ = {q}T -• il, uiI, viI, wi, ui, Wi+lj (115)

The reference surface strain, change in curvature, and twist are given, from

Eqs. ( 90) and (109) by

Cl ½ 2 + y2)

62  j(ý + 2

C12 6x7
{E} [B1 ] {q} + 116)

K 1  0

K2  0

2K12  0
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in which

0 - 1/h 0 l/R1

0 r'/2r -n/2r 1/R2

o n,/2r 0-h_ r'
I 1 (1[R [)] 2

h-2 hR, ' _ 0 j1_2

- r'/2rh - r'/2rR1  n/2rR 2  - n21r2

n n ( r' 2 nr'
rh rR, rR 2 hR2  -r

1/h 0 0

r'/2r -n2r 0 (117)

n/2r - nr 0

SiR 1  0 h-12

- r'/2rR, n/2rR 2  r'/2rh

nI r' + 2 \, n

rR7R (¾R2 _i -~

Equation ( 117) is based on the assumption that for n > 0

u(s,O) = Un (s)sinnO, v(s,e) = Vn (s)cos no; w(s,O) = wn (s)sinnO ( 118)

and for n = 0

u(s,O) = u(s); v(s,O) = v(s); w(s,O) w(s) ( 119)

The rotation-displacement relations ( 91) can be written in the form

307
{w} = {q} 120)
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where

3x7I12h - 1/2R, 0 0 -I/12R, 0 1/2hi

[R] = 0 0 -1/2R 2  i/r 0 -1/2R 2  0 121)

0 n/4r 0 n/4r ( _ r) 0

Equations ( 113) - ( 117) are analogous to Eqs. ( 34) - ( 38) for the

curved beam. Equations ( 120) and ( 121) are analogous to Eqs. ( 63) and

(2.40), respectively. Insertion of Eq. ( 116) into Eq. ( 89) yields an

expression for the strain energy of the shell which is analogous to Eq. ( 44)

for the beam. The only differences are the dimensions of the vectors and mat-

rices and the fact that the shell energy must be integrated over 0 as well

as over s.

The nonlinear axisymmetric "prebuckling" (or in a modal vibration calculation,

"prestress") analysis is carried out after specializing Eqs. ( 116) and ( 117)

to axisymmetric displacements, that is, after setting e 1 2 ' K 1 2, Y5 t and n

equal to zero.

Other Components of the Energy

A similar procedure is followed for the strain energy of the discrete rings.

(Remember the smeared rings and stringers are included by appropriate modifi-

cation of the 6x6 integrated constitutive law [C] !) The potential energy

of the applied loads, the kinetic energies of the shell and of the discrete

rings, and the junction and boundary conditions are handled in an analogous

way.
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Bifurcation Buckling Analysis

Two Sets of Loads

The bifurcation buckling problem represents perhaps the most difficult of the

three types of analyses performed by shell-of-revolution computer programs.

Therefore, details of the formulation are given here.

It is practical to consider bifurcation buckling of complex, ring-stiffened

shell structures under various systems of loads, some of which are considered to

be known and constant, or 'fixed' during a computer run and other of which are

considered to be unknown eigenvalue parameters, or 'variable'.

The notion of 'fixed' and 'variable' systems of loads not only permits the

analysis of structures submitted to nonproportionally varying loads, but also

helps in the formulation of a sequence of simple or 'classical' eignevalue

problems of the form of Eq. ( 75) for the solution of problems governed by

'nonclassical' eigenvalue problems of the form of Eq. ( 76). An example is

a shallow spherical cap under external pressure, such as shown in Figure 23.

Very shallow caps fail by nonlinear collapse, or snap-through buckling, not

bylbifurcation buckling. Deep spherical caps fail by bifurcation buckling

in which nonlinearities and edge effects in the prebuckling phase are not

particularly important. There is a range of cap geometries for which bifurca-

tion buckling is the mode of failure and for which the critical pressures are

somewhat sensitive to predictable nonlinearities and nonuniform deformations

in prebuckling behavior. The analysis of this intermediate class of spherical

caps is simplified by the concept of 'fixed' and 'variable'pressure.



Figure 23 shows the load-deflection curve of a shallow cap in this inter-

mediate range. Nonlinear axisymmetric collapse (pn1 ), linear bifurcation

(Plb), and nonlinear bifurcation (pnb) loads are shown. The purpose of

the analysis in this section is to determine the pressure pnb* It is useful

to consider the pressure pnb as composed of two parts

f
Pnb = + ( 122)

f

in which p denotes a known or 'fixed' quantity, X is an eigenvalue, and

f
AP is a known load increment. The fixed portion p is an initial guess or

represents the results of a previous iteration. It is clear from Figure 23

f f
that if p is fairly close to pnb the behavior in the range p = p + XAp

is reasonably linear. Thus, the bifurcation point pnb can be calculated by

means of a sequence of eigenvalue problems of the form

[Kl(Pfm))]{x} + XLK 2 (AP(m))]{x} = 0 (123)

through which, for increasing iteration index (m), ever and ever smaller
f

values of XAP() are determined and added to the known results p () from

f
the previous iterations. The initial guess P(o) need not be close to the solu-

tion pnb"

The matrix K1 is the stiffness matrix including the effects of the 'fixed'
f

loads p (m) The matrix K2  is the 'load-geometric' matrix and is proportional

to the stress resultant increments due to the known load increment Ap. The

derivation of these matrices follows.

As in the case of the beam analysis, it is known that an axisymmetric equil-

ibrium state {x•} = {(uf, vo, Wo)} exists corresponding to the 'fixed'
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f
load p = p The object of the bifurcation buckling analysis is to determine

whether {x f + x b}, where {xb I is an infinitesimal, nontrivial, kinematically
0

f
admissible buckling mode, also represents an equilibrium state at p = p f

First a prebuckling solution {xf + Ax } is obtained at a neighboring load
0 0

f
p = p + Ap. (Note that {Ax } is a finite quantity, not infinitesimal as is0

the buckling mode {x b.) The total displacement {x} = {u}, {v}, {w} is given

by

{u} = fuf + Au0 + Ub}; {v} {v= + Av + vb}; {W} = {wf + Aw + wb1  124)

Shell Strain Energy

When the right-hand-sides of Eqs. ( 124) are inserted into Eqs. ( 90), the

total reference surface strain and curvature-change vector can be expressed in

the form

{e} = -{e(0)} + {e(l)} + {e(2)} (125)

in which {e( 0 )} represents the contribution of the displacements Ix + AX};

{e(I)} represents the contribution of the terms that are linear in the infini-

tesimal modal displacements {xb }; and {e(2)} represents the contribution of

the terms that are quadratic in {x b}. The strain energy Us in Eq. ( 89)

can be arranged such that terms of similar power in {xb} are collected

U = U(0) + UMI) + U(2) + ... (126)
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The zero-th order terms in Eq. ( 126) can be dropped because they are independ-

ent of the dependent variables {xb}. The first order terms, when combined with

the other components of the total energy functional H, cancel because {xf+
0

Ax } is an equilibrium state. Terms of higher order than second in {x b} are
vanishingly small compared to U (2) Hence, the expression for U governs(2)

bifurcation buckling. From Eq. ( 89) one can write

U (2)f f cl [ C11[c{(l)}I + 2 ([jO)1 [C] + [NTJJ{1(2)}J(17

Analogous expressions can be written for the discrete ring strain energy [Eq.

( 95)] and the junction and boundary conditions, Eqs. ( 104) and ( 105).

If the prebuckling state Ixf + AXo} is axisymmetric and torsionless, the

first order strain and curvature-change vector {E(I)} calculated from Eqs.

( 90) is given by

ub, + wb /R + (Bf +Ao)Bb

.b + b bvb/r + ubr'/r + wb/R2

(1) = ub/r + r(v b/r)' + (Bf + AB)(1

Bb 128)

ýb /r + r'b /r

2(-b /r + r ýb/r + vb'/R2)

The second order terms {c(2)I} are given by
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½18b) 2 + b)2'

½(ýb)2 + (yb)2

=r (2) 1 8b~b 129)

0

0

0

From Eq. ( 84), the quantity (Le°)] [C] + LNT) in Eq. ( 127) can be writ-

ten as LSOJ, where

Ls J fLso + LSJ

=LN N0, 0, Mf0 , M20 , 0f (130)

+ LAN 1 0 , AN2 0 , 0, M10' "M20, 0_

It can easily be verified that the second product in Eq. ( 127) can be trans-

formed as follows

2 loJ{e 2
)} = Lo_1fo + AoWj{P} ( 131)

in which

b b b bLwJ I L• , A ( 132)

N f 0 0 ANl0 0 0
S 00

1 N0 fl 0 + N 20 :1
I f f

0(N0+N20 0 0 (AN+0AANN

00 00 20)

L133)
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The Aýo should be neglected in Eq. ( 128) because these terms contribute
f

to the stiffness matrix [Kl(p(m))], which is to be evalauted at pm) not

at f + Ap The vector jc(I)} can be written in terms of the nodal
P(m) (m

point degrees of freedom Lgbi:

(1[6x7 f 6X j bi{s = [B 1] + 0 0[B 2 ]j {q} 134)

in which [B1 ] is given by Eq. 1 117), [B2 ] is given by

-1/2h -1/2R 0 0 -1/2R1  0 1/2h

0 0 0 0 0 0 0

[B2 ] 0 0 -1/2R2  n/r 0 -1/2R 2  0 (135)

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

and {qb} is given by Eq. ( 115) with superscript "b" added. The rotation

vector Ld_[ is expressed in terms of the nodal point degrees of freedom in

Eq. ( 120) and ( 121).

Using Eqs. ( 120), ( 131), and ( 134); integrating over e (multiply by

2Tr if n=0, ff if n#O); and integrating over s (multiply by h), one can trans-

form the shell strain energy expression ( 127) into the form

U(2) (7 or 27r) hrkIX [[B1 + B 2  [C] B + [B1 B

S3x3 3x7 7xl

+ []T [No] [R]] {qb} (136)

[b 7x3 3x3 3x7
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in which rk Is the radius r [Figure 20(a)] evaluated at the midlength of

the kth finite element. For the kth finite element the local stiffness mass
Sk f

matrix F(Pm) of the shell as loaded by the 'fixed' loads p is
LmJshell(m

given by hr times the first set of terms in Eq. (136) that are premultiplied by
bi ib (A (m) ý]k

Lq and postmultiplied by {qb, The local load-geometric matrix [K2 (Ap shl

is given by hrk times the second set, that is
k

[K2 (AP(m) Ishell hrk [i T [ANo] [] (.137)

K and k just described are analogous to the local stiffness and load-

geometric matrices for the curved beam, given in Eqs. ( 74) and ( 75), re-

spectively. These local matrices are assembled into the global matrices of

Eq. ( 123) in the same way as described in connection with the discussion

associated with Figures 12 and 13 for the curved beam. Figure 24 shows

the format of the global stiffness matrix [K 1 ] corresponding to the two-

segment discretized model in Figure 20(b).

Strain Energy for a Discrete Ring Stiffener

The strain energy U of a discrete ring, given by Eq. ( 95), can be expandedr

in the same manner as that of the shell,

U U(0) + U + + ... ( 138)
r r r r

Again, it is U(2) that governs bifurcation buckling
r

Le) -ý [G] {l)j + 2( J [C] +, L {(2)}jrde7 139)
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in which, from Eqs. ( 95) and ( 97)

*•b_ b/r
r V/r + w/rr c c c c

(1 C C

r ( 140)
K -b/rc + ýb/r

K ýb/r + ub/r2xy C C c

+

0(2) ( 141)
r 0

0

ErA 0 0 0

4x4 0 E I -E I 0
0 rIy rx ( 142)

o -E I EI 0
r xy rx

0 0 0 GJ

and

rL r( 143)

T T T
with NTr MTy MT given by Eqs. ( 96). As with the shell strain energy, the

term C(L°)i [G] + [7Tr ] in Eq. ( 139) represents an axisymmetric prebuckling

r r•



force and moment LSro in the ring. Lsro can be written in the form

LSro = LsfrJ+ SroJ = LNfr' 0, Mfr ,0 J+ LANro , 0, AMro, J ( 144)

The second product in Eq. ( 139) can be expressed in the form

2roS r T Lb±'cJ [r9f + AN {b ( 145)

in which

l o oK oj ( 146)

f of
Nf + A0N N fr A r

Lro rl 01 N~ f0 AN
IrI + Lj( 147)

L ro Lroj

The quantities Nf and AN represent the prebuckling ring hoop force due
ro ro

to the 'fixed' load p() and change in load Ap(m), respectively. The pre-

buckling ring moment does not appear in Eq. ( 147) because the ring curvature-

change expressions are linear.

It is necessary to express the discrete ring strain energy U(2) in terms
r

of the shell reference surface nodal point degrees of freedom LqJ. First

Eq. ( 140) can be written in the form

ub
c

b
4x4 vc

= [Br] (. 148)
b

w
c

7b
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where

0 -n/rc 1/r 0CC

S n/r2 -n2/r2 0
4x4 c c
[Br] = /-19

n2/r2 0 0 c

C

n/r 2  0 0 n/rc
C

Equations ( 97d) and ( 97e) for the rotation components ic and yc were

used in the derivation of Eq. ( 149). Similarly,

b
u

C

b

{4c} 2x4 C

b

in which

[B ] = L n ( 151)

Next, it is necessary to express the vector u b, Vc31 Wc'1 in terms of dis-

placement components u *,v ,w* ,8' of the shell reference surface at the line

of attachment of the ring to the shell. (The displacement components u and
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w are shown in Figure 18. The circumferential component v v). This

transformation has the form

b *uc U

b *b
v - 4x4 f4x4 v

b EEl + a3o E 21 b (152)

b *b
w W

c

Bb a Bb

f

where a° is the prebuckling meridional rotation associated with the 'fixed'

loads. Consistent with Eqs. ( 106) and ( 103) and Figure 18, it can be

shown that

1 0 0 -e,

4x4 -e 2 n/r (1 +el/r) -eln/r 0

"[E 1  0 0 1 e2 153)

0 0 0 1

4x4 0 0 0 -e2

[E'212 ] Lin/r C'2 /r -e 2 n/r 0 154)
0 0 0 -el

0 0 0 0

F*b *b *b b b

Finally, the vector uw , must be expressed, with the help of

Eqs. ( 107), in terms of the nodal point degrees of freedom

*b
u

*b
v 4x7 b1

[] {q} 155)
*b

w

b
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in which

0 r/2R2  0 -r' r/2R 2  0 0
[T] 0 0 1/2 0 0 1/20 (156)

0 r'/2 0 r/R 2  r'/2 0 0
1 /211 - 1/2R, 0 0 1 /2R, 0 1/211

Using Eqs. ( 148), ( 150), ( 152), and ( 155) and integrating over O,

one can express the ing strain energy expression ( 139) in the form

x7 7x4 4x4 4x4 4x4 4x4
(2) = (f or 2¶) Lb[T , L [B] TUr 2 rc rJJ [] +ý [r ] [Br]

(157)
4x2 2x2 2x2 2x4 4x4 4x7
[B I T r-of [ F [Y] Iq b I

LLroI ANi [] lE TI{qIFL roj Wj~l~

All of the terms in Eq. ( 157) except those involving [AN ro] contribute

to the stiffness matrix [Kl (p(m )]. The terms involving [AN oI contribute

to the load-geometric matrix [K2 (Ap(m))]. The contributions of each discrete

ring to the total strain energy of the axisymmetric structure are added to

the local stiffness and load-geometric matrices of the shell finite element

which contains the attachment point of that ring.

Constraint Conditions

The junction conditions ( 104) and boundary conditions ( 105a,b) contribute

only to the stiffness matrix [Kl(P(m))] of the structure as loaded by the

f
'fixed' loads P(m)"

The mth constraint condition Um can be written in the form
c
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[ * + ±

U7 = L;',,',A-, AT, A'4J [1], + Q AIT + ,], 2w*÷ w 158)

in which the superscript "b" has been dropped for convenience, subscript z

refers to the meridional station corresponding to the mth junction between seg-

ments, and [QI] and [Q2M] are analogous to the negatives of [El] and [E2]:

-1 0 0 d,

Snd2/r -(I+dl/r) ndl/r 0 159)
0 0 -1 -d2

0 0 0 -I

0 0 0 d2

0 ndl/r -d 2/r nd2/r 0

0 0 0 d( 160)

0 0 0 0

In. Eqs. ( 159) and ( 160) superscript m has been omitted for convenience
m m m ad m

from the arrays. The 1 A2 , A 3, and A are the mth set of Lagrange mul-

tipliers associated with the £th station at which constraints are imposed on

the quantities u*, v*, w* and 0. For example, the constraint conditions

between Segments #1 and #2 in Figure 20 (m = 2,k = 7) arise from the re-

quirement that themotion during buckling or vibration of point D relative to

point C involves no deformation, only rigid body translation and rotation of

the ring cross-section. The quantity X1m corresponds to compatibility of

axial displacements u*- and u*+; X2 corresponds to compatibility of cir-

cumferential displacements v*- and v*+; Am to compatibility of radial dis-
3

placements w*- and w*+; and m to compatibility of meridional rotations

and .
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Displacement boundary conditions applied at the A and B ends of the meridian

(see Figure 20) take the form

UM [ m ] [Km= [Ql+- 0  Q2] ( 161)c Vi'P2'X3 1 01 2 W

Corresponding to the end A of the meridian (m=l):

"KA1 0 0 0]

0 KA2 0 0
[K'] = 0 0 KA3 0 .162)

0 0 0 K,,

Corresponding to the end B of the meridian (m=3):

-KB, 0 0 0

[K3m] =K 163)
0 0 KI3 0

0 0 0 K JI, 4

Equations ( 162) and ( 163) are analogous to Eqs. ( 27a,b) in the curved

beam analysis. The quantities KAl' K A2 etc., and KBI K2' etc., are

assigned values, either unity if the corresponding displacement component is

zero or zero if the corresponding force component is zero. The displacement

conditions correspond to a shell which is supported at distances dM and dm
1 2

from the reference surface. For the shell in Figure 20(a) the KAl, KA2 ,

etc, would all be zero and the KBl' KB2' etc., would all be unity. The

constraint conditions ( 158) and ( 161) can be written in terms of the
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vectors [q+] and [q-] byuseof Eq. ( 155). The compatibility condition

(2.158) can be written as a symmetric quadratic form in the following way:

= Lq-,X,qJ [F] { (164)c +

with

X ~m m m m15
•1, 2, m, mA ( 165)

7x7 7x4 7x7

[0] [QTj T  [0]
4x7 4x4 4x7

[F] [QT] [0] [T] (.166)

7x7 7x4 7x7

[0] [T]T  [0]

Q m + 0 167)

The boundary conditions ( 161) take a similar form:

[[0] [KQT] T [Of/ q-

U [q-, A, qJ [KQT] [0] [0] A (168)

The contributions of the junction conditions ( 164) and boundary conditions

( 168) to the global stiffness matrix of the structures shown in Figure 20

appear in Figure .24. The boundary conditions at A contribute the elements

[KQT] 1 and [KQT]l; the compatibility conditions for conformity of displace-

[KQT]I isplace



ments and rotation at the junction between Segment #1 and Segment #2 contribute

the elements [QT]2 ' [QTI2, [T], and [T]T; and the boundary conditions at B

contribute the elements [KQT] 3 and [KQT] .

Live Load Effects

The expressions ( 98) and ( 99) for the potential energy of the applied loads

are valid for constant-directional loads. Cohen [ 29] gives the conditions of

conservativeness for a load that rotates with structural deformations, such as

a pressure acting normal to a continuously deforming shell. The potential

energy expression, including pressure-rotation or 'live' load effects, is given

by Cohen [ 291 for a shell of revolution as follows:

Up2 = " I (Plu + PzV + P 3 w) - ( I3 + 2 )

s ( 169)

+ +:P3  ( + ) + uwpI rdeds

The quadratic terms in Eq. ( 169) contribute to the stiffness matrix [K(p f))]

and to the load-geometric matrix [K2 (Ap(m))]. The contribution to [Kl(Pf))]

arises from

7x3 3x3 3x7

(r or 2 )hrk qbj [D ]T [if] [D] {qb} ( 170)

and the contribution to [K2 (AP(m) )] arises from
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7x3 3x3 3x7
(7T or 2wr) hrk ~.b [D ]T [j-] [D] {q b}} 171)

in which rk is the radius r evaluated at the midlength of the kth finite

element, [D] is given by Eq. ( 114), and [P I is

-p f /R 0-
-3/R1 0-3

3x3 -f f
[] -P 3 /R 2  0 (C172)

-p 0 pf(1/RI + 1/R 2 )

L -1

The matrix [AP] is given by Eq. ( 172) with p3  replaced by AP3.

There is an analogous contribution from the horizontal line load H (Figure

18) acting normal to the deformed centroidal axis of the discrete ring.

The contribution of the line load-rotation effect to [K1 (P m))] arises

from

7x4 4x4 4x4 4x4 4x7

(7t or 2wt) Ljbi [ +EjY,+ E T{b~ 173)

in which

0 0 0 0

4x4 0 -Hf/r 0 0

c
[H--] = (174)

0 0 Hf/r 0

0 0 0 0
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The contribution to [K 2(Ap(m))] arises from the same expressions with H

replaced by Al and Hf by AH.

Summary of Bifurcation Buckling Matrices

The eigenvalue problem for bifurcation buckling is expressed in Eq. ( 123).

The contributions of the three energy components Us, Ur, Up, to the kth

finite element local stiffness matrix [K1 (Pfm))]k and load-geometric matrix

[K2 (AP(m))]k can be combined from Eqs. ( 136), ( 157), (170), ( 171)

and ( 173). These local finite element matrices, divided by a common fac-

tor, fr or 2ff (depending on n), are given by

0
[Kl(p (m))]k = hrk LBl+fB2  [C] [Bl+foB2BI2

o 0
+ [gT [Nf] [R] + [D]T [Pf] [D

0 1k

0D 0 ( 175)

+ 6 .r +-]T T
Scj B[ [Br] [

+ [H ]J [E+ýOfE2] [T]J
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0 ®
[K2(Ap ] = hrk [RIT [AN] [R] + [D]T [JP] [D k

+6k r -T ([B T [E- [B]16
i L loi [j ro [W(.16

kk
+ [ýHr) ý

in which k indicates "kth finite element", ak are Kronecker deltas, andJ

j indicates a station to which is attached a discrete ring.

Figure 24 shows how the local stiffness [K1]k matrices are assembled or

accumulated into the global stiffness matrix [KI] for the two-segment

structure shown in Figure 20(a), discretized as indicated in Figure 20(b).

Each of the thirteen 7x7 subarrays [K 1 ]k is centered on the main diagonal

of [K1 ] and overlaps its neighbors as shown. The constraint condition

arrays given by Eqs. ( 166) and ( 168) are assembled into [K1 ] right

after assembly of the local stiffness matrix corresponding to the station at

which the constraint is applied. Assemblage of [K2]k into [K2]whic th costrintis ppled. sseblae o [K] ito K2] is simi-

lar, the only difference being that there are no contributions from the con-

straint conditions.

Table 2 summarizes where the various terms in Eqs. (.175) and ( 176)

come from and their physical meanings.
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Computational Strategy for Calculation of Critical Bifurcation Load

The stiffness matrix [K1 ], load-geometric matrix [K2 ], and eigenvalue X

in Eqs. (. 123) depend on the number of circumferential waves n in the buck-

ling mode {xb 1. Hence, the bifurcation buckling eigenvalue problem might

be better posed as

[Kl(Pm) ,n)]{xbl + Xn[K2 (AP,n)] {xb} 0 (177)

Figure 25 shows a sequence of critical load estimates p cr(n) that might

result, for example, from an analysis of a spherical cap under uniform exter-

nal pressure, such as is depicted in Figure 23. The computer program user

provides a range of n, nmin S n < n max, which is to be explored during a

search for the minimum pcr (n). The user also provides as input initial

f
values for n, p (), and Ap(o). Usually, he will choose n in the middle

f
of the range nmin to nmax, P (o) = 0, and Apo = unity. Such a choice yields

eigenvalues Xn which are numerically equal to the bifurcation load p cr(n).
f

Figure 25 indicates an initial choice of n = 8 and p = 10.0. Suppose
(o)

that initially Ap(o) = 1.0. The first eigenvalue problem to be posed and

solved is

[K (Pf) =10, n=8] {xb + X8 [K 2(Ap(o)=l, n=8)] {xb} 0 (.178)

The point on the dashed curve labeled "1" indicates the first computed bifur-

cation buckling load estimate, which is calculated from

Pcr(8) = P (o) + X8 * AP(0) • 69 ( 179)
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f
!From the scale shown in Figure 25 and the initial conditions p fo= 10.0,

(o)

Ap(o) = 1.0, it is seen that the first eigenvalue X8 calculated by the

program would have been about 59.

fWith P() fixed at 0.0 and Ap fixed at 1.0, an eigenvalue is next

calculated for n = 9. The result,

Pcr (9) = 10.0 + X9 * 1.0 • 60 ( 180)

is labeled "2" on the dashed curve and corresponds to a smaller eigenvalue

than that for n = 8. Hence, n is further increased by the computer program

funtil a minimum pcr (n) is perceived. The loads P(o) and Ap(0) are held

fixed during this phase of the calculations, so that the nonlinear prebuckling

analysis is not repeated for n = 9, 10, 11, or 12.

The program "perceives" that the estimated critical load p cr (11) is a minimum

in the range of n provided. At this point new values of the 'fixed' load

and load increment are established

P( 1 ) = P(O) + A(±I)*AP(o)' (181)

Ap (l) p ()/1000 (182)

The load increment Ap( 1 ) is set very small compared to 'fixed' component

f
P( 1 ) to minimize the difficulty of finding a nonlinaer prebuckling solution

at the load P( 1 ) + AP( 1 )" Also, the small increment added to a relatively

large fixed load yields an accurate approximation of the rate of change of

G;



f

prebuckling stress resultants in the neighborhood of P( 1 ). New prebuckling

solutions are obtained for loads P( 1 ) and P( 1 ) + AP( 1 ). A new eigenvalue

problem

[Kl(P( 1 )., n=ll)] {xb} + X1I[Km(AP( 1 ), n=ll)]{xb} 0 ( 183)

is set up and solved, leading to the result labeled "6" in Figure 25:

(r6 )(1l = P( 1 ) + X1(6* Ap() - 28 ( 184)

From Figure 25 it is seen that p(6)(ll) is considerably less than -(4) (11),

so that X (6) must have been negative.
11

(7) ad_(8) thnubro
For the next two critical load estimates, p ( and cr the number of

f

circumferential waves n is held constant at 11 and new values of p f and
(in)

Ap(m) established until IX*Ap(m)l is smaller than Ipm)/1000. First,

new nonlinear prebuckling solutions are obtained corresponding to

f = (6) (Ap = f /1000 (185)
P( 2 ) = cr (2) ((2)

and a new eigenvalue problem

[K( ),n1 ]jb (7)[ n0) {(b 186)

[( )n11)] {xb + 1[K 2 (AP( 2 ) n11)] {xb1

is solved, leading to the result labeled "7" in Figure 25:

(7) f(i) = f A 36 (187)
Pcr ( P( 3 ) P( 2 ) + X 36 (18(2)
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This process is repeated once more before convergence at

-(8)1 f f ( pAp (( 188)

Pcr (4 ) P( 3 ) + X11

f

At this point the circumferential wave number is again varied with P( 4 ) =

p(and (8) = paf /1000 held constant. A new minimum critical loadcr AP(4) 4) "M

is perceived at n = 10. Once more the procedure described in connection with

Eqs. ( 181) - ( 188) is followed. The final critical load estimate is

p (12) and the corresponding critical circumferential wave number is n 10.
cr

This is the load denoted pnb in Figure 23.

Pitfalls

The strategy just described works well if the collapse load p nk correspond-

fing to axisymmetric snap-through is higher than any of the estimates P(m)

(Q)and if the eigenvalues X n always correspond to the lowest bifurcationn

point. The strategy must be modified if the situations depicted in Figures

26 or 27 exist.

f

If the program user sets p(o) = 0 and Ap(o) equal to a very small fraction

of p n' the dashed curve in Figure 25 will correspond closely to a linear

(4)(n=i)crepnst
bifurcation buckling analysis. If the minimum p cr (n = 11) corresponds to

Pkb in Figure 26, that is, if it is higher than the axisymmetric collapse

load pnk' the program will be unable to determine nonlinear prebuckling
f f

solutions for P( 1 ) or P( 1 ) + AP( 1 )"
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Note that the result labeled "6" in Figure 25 implies the calculation of a

(6)
negative eigenvalue X11 , as discussed immediately following Eq. ( 184). If

the situation shown in Figure 27 exists, conventional subroutines for the

extraction of eigenvalues will yield the second bifurcation point, X(2)
11

rather than the first, 1l)l " for n = 11 circumferential waves.

Modifications of Strategy to Avoid Pitfalls

The pitfalls illustrated in Figures 26 and 27 can almost always be avoided

by the following approach. The program user first selects an initial number

of circumferential waves n which he feels corresponds to the minimum bi-
0

furcation load. For this wave number n0  the stability determinant
fo

I[Kl(P f) ,n) ]0 is calculated for a sequence of load increments AP(0) as
f

shown in Figure 28(a). The initial load p (o) and load increment are

chosen to be fairly small compared to the expected critical load, say about

Per/10.

For each load increment the nonlinear prebuckling equilibrium state is deter-
f

mined and the stability determinant is calculated for n = no. The load p ()

is increased until one or more eigenvalues are detected between two sequential

load steps [e.g., stability determinant changes sign in Figure 28(a)] or un-

til the maximum allowable user specified load has been reached.

At this point in the calculations a series of eigenvalue problems of the form

[Kl(P(m-l),n)] Ix b + Xn[K2(AP(o),n)] jxb} 0 (189)
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is set up and solved, where

[Kn)] the stiffness matrix corresponding to n circum-

ferential waves, of the structure as loaded by

L f
I * P(m-1)

K 2 (AP(o),n)] the load-geometric matrix corresponding to the pre-

stress increment resulting from the load increment

L2 - Ll = Ap(o)

- L1 = the load state just before the sign change of the

stability determinant, or the second-to-last load

fP + Ap L = the load state just after the sign change of the
P(m-l) (o) 2=

stability determinant, or the last load

S= the eigenvaluen

bx = the eigenvector

n = the number of circumferential waves; n lies in a

range nmin : n : nmax, with nmin and nmax pro-

vided by the program user. Note that the initial

guess n0  also lies in the range nmin < n _< nmax

Also note that the increment in n need not be unity,

but may be a suitable fairly small percentage of the

average of nmin and n ax say An = 0.05 (nmin +

amax)
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From this point on the strategy is the same as already described in connection

with Eqs. ( 178) - ( 188). If Figure 28(b) is used as a reference, the

program next calculates eigenvalues corresponding to X(l), X (2) (3)
n n- n

(4) (5) o 0+1 0-1
X n o-2 , and X n 6_ 3

New prebuckling solutions are then obtained for the loads

X (4) ApP(M+l) P(M-1) n crit (0) 190)

and p f + Ap where Ap p f M+l) /1000. A series of new eigenvalue
(M+l) (1)

problems of the type in Eq. ( 189) would then beset up with n held constant

at n = n until JXAp(m)j becomes smaller than lp f /10001, as described
crit (m)

earlier in connection with Eqs. ( 187) and ( 188). If some of the eigenvalues

X(j) corresponding to the problem given in Eq. ( 189) take on negative values,
n

such as shown in Figure 28(c), the pitfall illustrated in Figure 27 might

still prevent a finding of the true lowest eigenvalue. The following example

illustrates such a case and presents a remedy.

Example - Buckling of a Very Thin Cylinder Under Axial Compression

This example is included here because it is a difficult case from a numerical

point of view, since eigenvalues are close together and close to the axisym-

metric collapse load, and the case demonstrates some of the internal checks

and automatic internal control in one of the computer programs for buckling

of shells of revolution [ 18]. Because of these properties and because the

geometry is simple, this is a good test case for computer programs that per-

form buckling analysis including nonlinear prebuckling behavior and nonuniform
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prebuckling stress and displacement.

Figure 29 shows the model of a cylinder with radius R = 500 in., thickness

t = 1 in., length L = 2,000 in., Young's modulus E = 107 psi and Poisson's

ratio V = 0.3. The cylinder is treated as being symmetric about the midlength,

and the 1,000-inch half-cylinder thus analyzed is divided into two segments:

a 200-inch-long edge zone segment with 83 nodal points, and an 800-inch-long

interior segment with 99 nodal points. The axisymmetric prestress model con-

tains 379 degrees-of-freedom, and the stability model 566 degrees-of-freedom.

Simple support conditions are applied at the edge, and symmetry conditions at

the midlength. Also shown in Figure 29 are the prebuckling displacement dis-

tribution at the predicted critical load of 10,274 lb/in, and the critical

buckling mode corresponding to n = 18 circumferential waves.

Figure 30 shows the sequence of wave numbers and loads automatically explored

by the computer program [ 18] to obtain the final result L6 = Ncr = 10,274
f

lb/in. With an initial base or 'fixed' load p (o) = 0 and a load increment

Ap(o0)= 1.0 lb/inch,. eigenvalues labeled (1), (2), (3), and (4) are calcu-

lated. The base or 'fixed' load is then set equal to the local minimum or 12,008

lb/in, and the load increment is set equal to 12,008/1,000 lb.in.

In this case, it is discovered from a count of the negative terms on the main
f

diagonal of the factored stiffness matrix [Kl(P( 1 ) = 12008, n=12Y](factored)

that for n = 12 circumferential waves, three eigenvalues exist below the

f
'fixed' load P( 1 )= L2 = 12,008 lb/in. Hence theiloadis automatically reduced

by a factor of 0.7, to L3 = 8,414 lb/in. After the eigenvalues corresponding to

points 5, 6, 7 and 8 and 9 in Figure 30 have been determined, the new base
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load P( 2 ) = =10,819 lb/in, is established corresponding to n = 18

waves. It is also determined that at n = 18 one eigenvalue exists below

this new 'fixed' or base load. However, the new base load need not be reduced

by some factor because initial inverse power iterations for the eigenvalue

nearest to L3 = 10,819 indicate that subsequent critical load estimates will

further reduce the base loads L4 , L5 , etc., to the lowest eigenvalue rather

than increase them toward the second eigenvalue. Had the opposite trend de-

veloped, the program would have caused the base load to be reduced to 0.9*10,819.

Figure 30 shows the final three load estimates, L4, L5, and L6.

Figure 31 gives the prebuckling load deflection curve for this cylinder.

The abscissa represents the difference between the actual end shortening and the

linear end shortening that would exist if there were no prebuckling rotation.
f

Eigenvalues computed With Ap = 1.0 and p = No = 0, 5000, 10000, 11000, 11500,

and 11900 lbs/in, and n = 18 circumferential waves are indicated as crosses.

Several runs were made in order to obtain these results, each run correspond-

f
ing to a different 'fixed' load p = N . The open circles in the load-end

shortening curve correspond to the various loads, N = 5000, 10000, ... 11900.
0

The large dots represent the 'fixed' loads used in the sequence shown in Figure

30. Two to four eigenvalues are calculated corresponding to each open-

circle fixed load. These eigenvalues are indicated by crosses on the same

vertical lines as the open circles. The eigenvectors are shown in Figure
f

32. Notice that for 'fixed' load L = P( 0 ) = 0, the lowest four eigen-

values are very close and are all approximately equal to the 'classical' load

0.605 Et 2/R. The lowest eigenvalues are also close for n = 15, the start-

ing circumferential wave number in the search for the minimum critical load

P(cr) (n=n crit). Therefore, several inverse power iterations and spectral
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shifts are required to obtain the lowest eigenvalue at that wave number. For

N = 5,000 lb/in, the lowest eigenvalue 'separates' from the others, and theo

localized nature of the corresponding eigenvector is strongly developed (Fig-

ure 32). Because of this separation of the lowest eigenvalue, fewer inverse

power iterations and spectral shifts are required for convergence. Thus, the

user may save computer time by choosing a base or 'fixed' load to be some

reasonable percentage of the estimated final buckling load. This is partic-

ularly true if many values of the wave number n are to be explored and if

the predicted n corresponding to the minimum pcr (n) is likely to depend

strongly on the fixed portion of the load, as is the case for axially com-

pressed very thin cylinders.

Another Pitfall - Failure to Find the Global Minimum p cr (n)

In all of the examples shown in Figures 25, 28, and 30 the curve of

critical load or eigenvalue vs. circumferential wave number n has a single

minimum and corresponding nrit, given p m)f However, the curve of p (n)

vs. n for optimally designed stiffened shell structures often has several

minima, all of them at approximately the same load, as shown in Figure 33.

This is because the minimum weight design often yields a configuration in

which general and local instability occur at almost the same load. In Figure

33 the general instability mode and local modes corresponding to primary

failure in the first, second, and third bays of the conical shell are shown

as insets in a plot of pcr (n) vs. n. In addition the rings might cripple

at still higher values of n. It is generally up to the computer program

user to provide a wide enough range of n or to make several runs with dif-

ferent ranges of n in order to cover all possible failure modes.
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Physical intuition is invaluable as a guide for finding the absolute minimum

load. One may idealize each bay of a ring stiffened shell by assuming that

the bay is simply supported, calculate corresponding "panel" buckling loads

with certain appropriate ranges of n, and then use the critical loads and

values of n as starting points in an investigation of the assembled structure.

It is not necessary always to increase the circumferential wave number n by

one. In the search for the minimum buckling load, for example, one may only

be certain that the n corresponding to the minimum buckling load, ncrit,

lies in the range 2 < n < 100. Oneimight, therefore, choose An = 10 and

" zero in" on a more accurate value in a subsequent run.

Experimental evidence is of course very useful in determining a good choice

of initial number of circumferential waves n0 and range limits nmin and

n max If none is available the user is advised to try the following formulas:

(1) "Square" buckles for short cylindrical or conical shells or

panel buckling

n = rr/L, where L is the shell meridional arc length

corresponding to the half-wavelength

(2) For monocoque deep shells, axial compression:

n proportional to [(Nominal circumferential rad. of curve)/t]l/2
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(3) For shallow spherical caps supported rigidly at their edges;

external pressure:

n = 1.8 *a2* (R/t) 1 / 2 
- 5 (a2 = angle in radians from the

axis of revolution to the edge)

(4) For axially compressed conical shells and frustrums:

Use formula 2 where the circumferential radius of curvature, R,

is the average of the radii at the ends.

(5) Spherical segments of any depth under axial tension

n = 1.8* (R/t)1 / 2 sin[c1 + 4.2 (t/R)1 / 2]

where a1  and a2 are the meridional angles measured from the.

axis of revolution to the segment beginning and end, respectively

(a 1 < a2)"

The above list of formulas is by no means complete. However, notice that

(R/t)1/2 is a significant parameter. If n is known for a shell of a given

geometry loaded in a certain way, a new value can be predicted for a new R/t

through the knowledge that n often seems to vary as (R/t)l/2 (R is the

normal circumferential radius of curvature.)
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Modal Vibration Analysis for Prestressed Shells

For modal-vibration analysis the stiffness matrix [K 1(p f n)] of the shell

as loaded by p fis the same as that appearing in the eigenvalue problem

for bifurcation buckling. The eigenvalue problem for modal vibration analy-

sis is

[K1l(p f,n)] Ix}b + 02 [M(n)] f{x b, 0 (191)

in which [M(n)] is the global mass matrix corresponding to n circumferen-

tial waves.

Starting from Eq. ( 100) for the shell and Eq. ( 101) for the discrete ring,

and assuming that the displacmeent as a function of time is

{xI fx i e (p 192)

one can derive the local mass matrix for the kth finite element:

7x3 3x3 3x7

[M] k = hrkmkL[[D ]T [I] [D]]

4x4 3x3

6~cjpj o '[E+~2][A] [El+Sý%jT [RITT][1 13

in which mfk is the shell wall mass/area, [I] is the identity matrix, pjis

the jth ring material mass density, A is the discrete ring cross section area,

and
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1 0 0 0

0 1 0 0
T = (194)

0 0 0 10 /

0 0 0 I/A

e 0

T = 0 Is -Isn 195)

0 -1 1
sn n

The matrices [D], [T], [E E ]E and [R] are the same as those used in
1 o2'

the derivation of [Kl1k and [K2, appearing in Eqs. ( 175) and ( 176).

The Is, I sn, In are components of the moment of inertia of the discrete ring

with respect to the (s,n) axis system, which is shown in Figure 20(a).

Linear Stress Analysis

Arbitrary loads p(s,O), acting on the shell reference surface and L(O),

acting along discrete ring centroidal axes, are decomposed into Fourier har-

monics, as listed in Eqs. ( 112). For each Fourier harmonic, the stiffness

matrix [Kl(p f=O,n)] and "right-hand-side" vector {F(n)} are formed. A

solution {x(n)} to the linear system

[K(p f=0,n)] {x(n)} {F(n)} (196)

is obtained and added to solutions obtained for previous values of n. The

stiffness matrix [K1 ] is the same as that used in the buckling and vibra-

f
tion analyses with the 'fixed' load P() now set equal to zero. The right-
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hand-side vector F(n) is formed from assembly or accumulation of the local

right-hand-side vectors for each finite element into the global vector. The

local vectors are generated from the first variation of the total energy eval-

uated for the undeformed structure. Contributions to these local vectors

arise from the second term in the integrand in Eq. ( 89) (thermal loads in the

shell), the last three terms in Eq. ( 95) (thermal loads in the discrete rings),

and all of the terms in Eq. ( 98) (line loads on the discrete ring centroidal

axes) and Eq. ( 99) (distributed loads on the shell reference surface). The

total shell and ring energy components corresponding to these linear terms in

q are:

Ushell (linear in q) 1 f f 2 {6(1)}rdeds - f f (plU+P 2 v+P3w)rdeds (197)

sO sO

1 ( T (1)}rcde- f (_VUc+Svc+Hw +Mý)rcde ( 198)
Uring(linear in q) = 2 - (-Vu

in which •LN is defined in Eqs. ( 84) and ( 86); fe(1)l is defined in

Eq. ( 128) (Remember a = 0 in this analysis); Lj is defined in Eqs. ( 143)

and ( 96); and j• is defined in Eq. ( 140). Using principles and equa-
r

tions introduced in the discussions and derivations leading to Eqs. ( 136) and

( 157), one can express Eqs. ( 197) and ( 198) in the forms

Ushell(linear in q) = (n or 27) hrk LLNTýIBI] - LPJ[D] {q} .199)

U ring (linear in q) = ( or 2i) rc LL$[Br][EI][T] - LU [EI]J{q} (200)

in which the transformations involving [B1 ], [D], [Br], [El], and [T]

appear in Eqs. ( 134), ( 113), ( 148), ( 152), and ( 155), respectively,

and
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LP] Lp• , P2' P3

(201)

LL] Lv, S, H, Ml

Corresponding to the kth finite element, the local force vector, divided by

the common factor 7 or 2w (depending on n), is given by the negatives of

the right-hand-sides of Eqs. ( 199) and ( 200) without the {q}:

0 0
k ITj{F} _ hr kLLI[Bl] Lp- [

0 Q t202)
kG

-6 .r LN B][ E][i] [¥1- off I [Y] ]1
j cj Lr] r]l-J

The local "right-hand-side" or force vectors {F}k are assembled into the

global force vector {F} as described in the discussion following Eqs. ( 175)

and ( 176) regarding the local stiffness and load-geometric matrices. Table

.3 lists the equations that give rise to the various terms in Eq. ( 202) and

identifies the physical significance of these terms.

Various Discretization Methods

In the preceding development the discretizations shown in Figures 11 and

21 have been given the appellation"Finite-Difference Energy method". How-

ever, as emphasized in Ref. [ 19], the categorization of discretization

methods into "Finite Element" and "Finite-Difference Energy" is somewhat

artificial. In both the finite-element and finite-difference energy methods

the unknowns of the problem are certain generalized displacement components

located at discrete nodes in the domain. Between these nodes the variations

of the generalized displacements are expressed as power series in s. Inte-
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gration can then be performed analytically or numerically. The differing

choice of generalized displacement components and locations of the nodes are

the only characteristics of the two solution techniques which justify giving

them different names. Once the nodes and the appropriate generalized displace-

ment components have been selected, the solution procedure is identical for

both methods.

Figure 34 shows five types of discretization. The nodes are denoted by

large dots or crosses. The "element" is defined as the solid horizontal line

bounded by dots or crosses. Nodal point variables ui, vi, wi, ai, etc.,

are shown next to the nodes with which they are associated. The first three

models fall into the category "finite element method", the last two into the

category "finite difference method".

The three models ,Q , and® represent standard finite elements such

as described in Kotanchik et al. [ 30], Mebane and Stricklin [ 31], and Adelman

et al. [ 32]. A curved element Q with extra internal degrees of freedom

(dof) ul' vPi u2 ' and v2 permits rigid body motion without excessive

storage of energy. The internal degrees of freedom represent corrections to

the linear function. Elements of this type are described in [ 31]. An

alternate way of obtaining higher-order displacement functions is to define

more degress of freedom at the nodes [ 32]. Element 0 is of this type.

The displacements within each of these elements are given by the polynomials

shown in the figure. Integration of the energy functional can be performed

analytically or numerically. Gaussian quadrature seems to be the most accu-

rate and economical method of integration.
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Figure 35 shows schematically a structure consisting of five elements. The

displacement function w and its first derivative are continuous throughout

the domain. The displacement function for u and v corresponds to model

t. Of course, the elements need not be flat. However, if the element is

curved, higher-order displacement functions than linear in u and v are re-

quired for representation of rigid body motions.

Model G represents the discretization method described here in previous

sections. As has already been mentioned, in this finite-difference energy dis-

cretization, the integrand of the energy functional H [Eq. ( 1)] is eval-

uated at only one point within each element, and the total element energy is

obtained by multiplication of the energy per meridional arc length by the

element length £. The finite-difference formulas for variable mesh spacing,

given in Eqs. ( 110) and ( 111), are obtained by Taylor series expansions of

the displacements about the centroid of each element. Since first and second

derivatives of w and only first derivatives of u and v occur in the

integrand of Eq. ( 1), the appropriate polynomials for the lowest-order dif-

ference formulas in each case are shown in Figure 34(d) and (e). As in the

case of the finite-element method, the a. can easily be expressed in terms

of the nodal point variables. The finite-difference energy discretization

model @ has been used in computer programs by Stein [ .33], Bushnell [ 18],

.and Brogan and Almroth [ 22].

Figure 36 shows the finite-difference discretization of the same five-element

structure depicted in Figure 35. In Figure 36 the element boundaries are

at u and v nodal points (crosses). The quadratic w expansions pass

through three adjacent w nodes, spanning a longer arc length than the
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element. However, the integration, or "lumping" corresponds only to the lengths

between adjacent crosses. The in-plane displacements u and v are continuous

everywhere. Notice that at element boundaries the normal displacements and

derivatives are discontinuous. It can be shown that the displacement discon-

tinuity Aw. is of maximum order

hii+

Awil - i+l (h + 2hi + 2h + hi (203)
8 i- i+l 1+2'

and the slope discontinuity is of maximum order

iA~iI = 1 2i+ 1 (hi_1 + 2hi + 2hi+1 + hi+2 ) ( 204)

The finite-difference discretizations and © are similar to replacement

of the actual structure by a structure consisting of elements linked as shown

in Figure 37. The normal displacement w is continuous at the pinned joints

and u and v are continuous at the stations where the projections stick into

the rounded holes.

At first glance it would seem that this structure is far too flexible to repre-

sent the behavior of a continuous shell. However, notice in Figure 36 that

u and v must be continuous at the stations where w is discontinuous.

Since the circumferential strain, for example, involves at least both w and

v, the Aw at the element boundaries must remain small enough to keep this

membrane strain component, and hence the energy, at a reasonable level. In

other words, the minimum energy state will involve small discontinuities in

w at the element boundaries.
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In Figure 22 are given the computer times required to form the global stiff-

ness matrix [KI] corresponding to the problem shown in Figures 1 and 2.

The curve labeled "Finite Element Analysis" corresponds to Model® in Figure

34. As seen from Figure 2, a high order element of this type (cubic in

u and v) is required for convergence to a reasonably accurate answer with a

reasonable number of elements.

Figure 38 illustrates why the computer time for the formation of [KI] is

much higher for Model 0 than for Models 0 or 0:

(1) There is an extra loop over the number of Gaussian integration

points per element.

(2) There is more algebra required for formation of the kinematic

matrix B and more products required in the formation of

B TCB (B has more columns).

(3) An extra step is required outside of the Gaussian integration

loop in order to condense out the internal degrees of freedom

in each element.

In spite of the higher order of the finite element the convergence of

edge displacement w with increasing nodal point density is far more rapid

with the finite difference element 0. For an accuracy of 2.0% in w about

20 finite difference elements would be required, with about 0.25 second needed

to form the global stiffness matrix [K 1]. For the same accuracy, about 60

finite elements of the type Q would be required, with about 3.5 seconds
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needed to form [K 1 ]. The difference in the rate of convergence for the two

discretization methods probably results from the following:

(1) The lower order (stiffer) approximation for u, v, and w in

the finite difference element is compensated by discontinuities

in w and ý at finite difference element boundaries.

(2) The fact that the curved finite difference element energy is

evaluated at only one station per element results in a more

energy-free representation of rigid body motion than of the

curved finite element with cubic u, v, and w, in which

the energy is evaluated at more than one Gaussian integration

point.

Constitutive Law [C] for Composite Shell Walls

Here the phrase "composite shell wall" is taken in a broad sense. It may

mean laminated as described by Jones and Ashton et al. in Ref. [ 6- 8]. It

may also mean a shell wall modified by stiffeners that are to be smeared out

in the computerized model.

Equations ( 80) and ( 84) are based on an assumption that the principal

axes of orthotropy of the shell wall material are aligned with the orthogonal

coordinate lines on the shell reference surface. Thus, they are valid for

a stringer and ring stiffened shell wall such as shown in Figure 39, in

which the stringers follow meridians (s-coordinate) and the rings follow

parallel circles (0-coordinate). If the analyst wishes to set up a model in
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which both sets of stiffeners are smeared or averaged over the entire surface,

he can treat the shell wall as if it consisted of four orthotropic layers with

properties G, El' E2 , v1 2 ' m, al' and a2 assigned as listed in Figure 39.

If the stiffeners do not follow coordinate lines, the more general model de-

scribed in Ref. [ 6] is required.

On page 154 of Ref. [ 6] Jones write the equivalent of

N1 A11 A12 A16i Bll 12 B16 e1

N2 A12 A22 A26 B 12 B22 '26 e2

N12 A 16 A26 A66 '16 '26 '66 e12- - - - -- - - - - - - - -205)

M1 B11 B12 B16 D11 D12 D16 1,M4 BI B2 B6 DI D2 D6 KI

M2 B12 B22 B26 D12 D22 D26 K2

M12 B16 B26 B66 D16 D26 D66 2K 1 2

in which the stress and moment resultants are defined as in Figure 17 and the

reference surface strains and changes in curvature are defined as in Eqs. ( 90).

The Aij, Bi., and D in Eq. ( 205) are, of course, equivalent to the

corresponding C.. in Eq. ( 84). For the laminate Jones gives1J

N

A.. = (Qi) (z -z
I~ ij k k k-1~k=l

B (Q ) (z- 2
ij 2 ii k k Zk-l) ( 206)

k=l

D N (Q (z3 z
Dij 3 iij k k k-l)

k=l
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in which the zk are measured from an arbitrary reference surface, as shown

in Figure 40. (Jones [ 61 uses the middle surface, but this is not a

necessary restriction.) The Qij for each lamina are given by Jones on

page 51 of Ref. [ 6]:

4 2 2 4QII = Elic4 + 2(E12 + 2G)s c + E 22s

2 2 4 4
Q12 = (Ell + E22 - 4G)s c + G(s + c)

E 4 + 224
Q22 E E 411 + 2(E 1 2 + 2G)s c + E22c

207)
3 3Q16 = (E11 - E1 2 - 2G)sc + (El2 - E22 + 2G)s c

3 3
Q26 = (Ell - E1 2 - 2G)s c + (El2 - E22 + 2G)sc

12 224

Q66 (E 22 1 2 - 2G)s c + G(s + c)

in which Ell, E1 2 , E2 2 are defined in Eqs. ( 81),

s E siny c E cosy ( 208)

and y is the angle from the meridional direction to the "I" axis of the

lamina (direction in which E1 is measured).

Note that use of the full matrix in Eq. ( 205) in the analysis of shells of

revolution would prevent the separation of variables according to Eqs. ( 108).

Hence, in most one-dimensionally discretized analyses of stress, buckling, and

vibration of composite, laminated shells of revolution, the C.. in Eq. ( 84)
1J

are derived as in Eqs. ( 205) - ( 208) and the terms A16' A26' BI6' B26'

D16) D26 are subsequently ignored.
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Section 4

HYBRID BODIES OF REVOLUTION

Introduction

By "hybrid" is meant a body of revolution with both one-dimensionally and

two-dimensionally discretized regions, such as shown in Figure 41.. The

stresses and strains for distances equal approximately to one wall thickness

from the junction shown in Figure 41 cannot adequately be predicted with

thin shell theory. Therefore, a small region is defined in which the domain

is discretized in two dimensions. Figure 42 shows other examples in which

such a hybrid model might be used for accurate prediction of local stresses

and strains near structural junctions.

The existence of a special-purpose hybrid body-of-revolution computer pro-

gram for stress, buckling and vibration analysis is justified because there

exist many practical problems in which the geometry is axisymmetric or essen-

tially so.

The user of such a computer program can obtain solutions involving fairly

complex configurations with reasonable computer times. A hybrid program of

this type should be used primarily for cases in which most of the structure

can be modeled with use of thin shell elements, only very localized areas

being modeled with use of two-dimensional solids of revolution. If the
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two-dimensional finite elements are introduced sparingly, the bandwidths of the

stiffness, mass and load-geometric matrices are generally narrow. Such matrices

can be stored very compactly with a minimum amount of indexing. Thus, the com-

puter time to decompose the stiffness matrix is small, and input from and output

to auxiliary mass storage devices is kept to a minimum. Since most of the struc-

ture is modeled with very simple thin shell elements, the program user is able

to simulate the behavior of an entire complex structure in one model while re-

taining reasonable nodal point density and two-dimensional discretization in

critical areas.

There are in existence several general purpose computer programs [ 24] which

can yield solutions to problems of the type just described. In fact, the idea

of analyzing hybrid bodies of revolution, consisting of thin and thick segments

is not new. Strickland et al. [ 36] created a computer program, WASP, for the

axisymmetric linear static analysis of such bodies. Zudans and Chow [ 37]

wrote a hybrid program, BOXSHL, which permits nonsymmetric linear treatment by

means of Fourier Series expansion in the circumferential direction.

Many authors have written computer codes which can handle solids of revolution

by means of axisymmetric finite elements. Displacement functions and integra-

tion schemes in these elements canbe modified such that they are adequate for

the analysis of thin shells. Thus, Wilson [ 16] introduces incompatible modes

in order to create correct bending behavior, Ergatoudis et al. [ 38] derives

higher order isoparametric solid elements with one or two midside nodes, and

Ahmad et al. [ 39] and Pawsey [ 40] specialize these isoparametric elements

by taking advantage of certain characteristics of the behavior of thin shells.

Isoparametric solid elements are also used for shell analysis by Larsen and

112



Popov [ 41], by Bathe et al. [ 42] in NONSAP, by Dunham and Becker [ 43]

in TEXGAP and by Sharifi [ 44] in NEPSAP. Ferguson [ 45] extended the capa-

bilities of FARSS [ 46] to handle stress, buckling and vibration of thin and

thick shells and bodies.

These and other investigators favor using solid isoparametric two-dimensional

or three-dimensional finite elements for large deflection analysis of shells

because the kinematic relations are well known and the rigid body behavior is

represented exactly. Other work on thick shells or solids in conjunction with

thin shells is presented in [ 47] - [ 50].

Choice of Finite Element for the Two-Dimensional Regions

The guiding principle in the selection of an appropriate element for analysis

of the two-dimensionally discretized "solid" or "thick shell" regions is that

the element should be capable of reproducing thin shell behavior as well as

general three-dimensional behavior. If this were not the case, large spurious

stresses and artificial constraints would be introduced at every junction be-

tween "thick" (two-dimensionally discretized) and "thin" (one-dimensionally

discretized) regions.

The pressurized flat ciruclar plate (Figure 43) is a good example to use

in a discussion of what properties a "solid" element must have in order to

lead to accurate predictions of "thin shell" behavior. Suppose that the

plate shown in Figure 43 is loaded well into the plastic range. Then at

the axis of revolution, for example, the topmost fibers are compressed and

the bottom-most fibers are stretched plastically. Since the plastic flow is
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assumed to be associated with zero volume change, the axial strain (normal to

the surface) must be extensional at the topmost fiber and compressive at the

bottom-most. The simplest assumption is that the axial strain varies linearly

through the plate thickness. It follows that the axial displacement must vary

quadratically through the plate thickness. Thus, at least three nodes are

required through the plate thickness if the nodal point unknowns are the dis-

placement components. If only two nodes are used through the plate thickness,

the axial strain can only be constant. Such a gross simplification leads to

the prediction of very large stresses normal to the surface of the plate at

its extreme fibers, a result that naturally generates serious errors, especi-

ally in analyses in which plasticity or creep are included.

It is easy to see that at least three nodes are required in the radial direction

in each element in order that bending be possible. Wilson's [ 16] incompatible

element permits bending but still suffers from the insufficiency just discussed

relative to normal stress and strains.

The requirement of at least three nodes in each direction immediately suggests

use of an isoparametric 8-node element. Such elements were first introduced

by Irons in 1966 [ 51] and subsequently popularized by Zienkiewicz [ 52].

These elements can, as seen from the results listed in Table 4, reproduce thin

shell behavior. If the programming is done in double precision, the "aspect

ratio" is essentially unlimited. In another analysis of a flat plate, use of

elements with a radial length-to-thickness ratio of 1000 still led to good pre-

diction of the deformed state.
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Basic Equations

In this section the possibility of plastic flow and creep will be allowed.

Therefore, the equations governing equilibrium and bifurcation buckling will

be derived from the principle of virtual work, rather than from minimization

of the total potential energy as was done in the previous sections on the

analysis of elastic curved beams and thin shells.

Principle of Virtual Work

The first variation of a total energy functional H [analogous to H for

the beam in Eq. (12)] is

8H = f LaJ {8}3 dV (strain energy)

Volume

f f u • 68 dV (kinetic energy)

Volume

f Fb 6u. dV (body forces)

Volume

"f F 6u dA (surface tractions)

Area

-f F'. 6Ef(u-I1 dA ("following" pressure) ( 209)
f s

Area
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f u" r Ld (line loads) ( 209

cont'd)

+ ' 6 k( a Uk uk + aL) + Z a:k 6uk)

(constraint conditions)

= 0 (equilibrium condition)

Strains are considered to be small but rotations may be moderately large. The

material is elastic-plastic and primary or secondary creep are included in the

analytical model. The strain components LCJ are nonlinear functions of the dis-

placements u. The displacements u anywhere in each finite element can be ex-

pressed in terms of nodal point values q.

8
U = E h. (x, r) . ( 210)

i=l1

In Eq. ( 210) u represents a displacement vector and qi represents the

value of u at the ith node of a finite element. For example, in Figure

44(b) u has the components ul, u2, u 3 = qil, qi2, qi3"

The variation 6H is therefore given by

6H =- -H. 6q = " 6q = 0 (211)
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Since 6q is arbitrary, the equilibrium condition is

1 
-

3% ) dV

-f r. + F'. faT) I dA

s YL •-•i s 2ý

f9rjLd (212)

+ E --q E atkuk + ae

+ E X E0

i = 1, 2, 3, . . . N

Because the strains LeJ are nonlinear functions of the nodal point displace-

ments q, Eq. ( 212) represents a simultaneous set of nonlinear equations.

These equations must be solved incrementally because the material is elastic-

plastic creeping and hence its state is path-dependent. In addition to pro-

viding for an incremental procedure, one must provide for some kind of itera-

tive or self-correcting technique at each load or time increment in order to

prevent drifting from the correct solution path.

Appropriate Use of the Newton-Raphson Method with Path-Dependent Material
Properties

Suppose that for some known starting vector q of dimension N, we have
e

*i(qo 0 0. We wish to determine Aq such that (qi(q + Aq) = 0. A system
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of equations for the unknowns Aq can be generated by expansion of tp about

qo in a Taylor series. If only the linear terms in Aq are retained in

this expansion, one obtains the following linear simultaneous equations:

N 6 .
E • A q. - i 2, Z, 3, N (213)

j=l J

These equations are solved for Aqi and a new estimate of the solution qi =

q + Aq becomes available. Iterations continue until q is smaller than a

certain prescribed percentage of q. This is called the Newton-Raphson method.

The short description above is a reiteration of the discussion associated with

Eq. ( 56) for the nonlinear analysis of the elastic curved beam.

A certain refinement in the solution strategy is required if large deflection

effects and elastic-plastic material behavior are simultaneously present. The

Newton-Raphson method can be used only if *i can be expanded in a Taylor ser-

ies about the known origins q0  or ql or q2, etc. The Taylor series ex-

pansion exists if and only if the gradient Di/Dq exists. In problems involv-

ing material which loads plastically but unloads elastically along a different

path in stress-strain space, the existence of a unique 3i/Dq depends on the

use of a proper strategy for taking into account both geometric and material

nonlinearity. One strategy is to establish a double iteration loop for each

load or time increment: the tangent stiffness coefficients and plastic and

creep strains are updated in the outer loop and the geometric nonlinearities

are handled by the Newton-Raphson method in the inner loop. In the Newton-

Raphson loop the tangent stiffness is not recomputed with each new estimate

of the displacement vector q. While calculations are proceeding in this

inner loop, it is as if the material were elastic, loading and unloading along
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the same path in stress-strain space. Therefore, a unique value of 3l/aq

exists and the Newton-Raphson procedure is valid. It is important to be

assured of this validity because the Newton method has certain favorable con-

vergence properties which are well understood. If one is attempting to pre-

dict loads at which a structure collapses, it is important to know that failure

of convergence of the iterations indicates failure of the structure and not

simply failure of the algorithm to predict the behavior of the structure.

Details on various solution methods for nonlinear structural analysis, in-

cluding methods for reliable prediction of collapse loads are given in Ref.

[ 26]. More information is also given there on the double iteration loop

and on thenethod used to update elastic-plastic material properties in the

outer loop of the computational process.

Calculation of Pi /9qj

The stiffness matrix for each Newton-Raphson iteration is ap/ýq, and the

(i,j)th element of this matrix is ali /Dqj. From Eq.( 212), we can write:

6T 1. f Jab. 
dJ (L-] + .•-j r n m -- -- dV

bq. b qqi 71_qq6.

_-f , d[fA)
A s 6qi ýqj

m n• cn 6uk (214)

m 6X• n c buk
+ I . a£=1 qj k=i IAk aq,



Note that we have assumed by use of Eq. ( 210) that the displacements

anywhere in the structure are linear functions of the nodal point displace-

ments, q. This may be a questionable model for discrete rings attached to

areas on the shell which undergo moderately large rotations. The displace-

ments anywhere in the cross section of a discrete ring are expressed in

terms of nodal points on the shell reference surface in the neighborhood of

the attachment point of the ring to the shell. Since the cross section of

the discrete ring is assumed to remain undeformed in "classical" ring theory,

the displacements anywhere in that cross section involve sines and cosines

of angles of rotation of the shell wall. If these angles are relatively

large, retention of only the linear terms in the series expansions for their

sines and cosines may not be very accurate. Hence, for the discrete ring

analysis, the displacements u are considered for certain analysis branches

to be nonlinear functions of q. [For example, see Eqs. ( 106) and related

discussion].

Equilibrium

Equilibrium is determined by iterative solution of Eqs. ( 213), with Eq.

( 214) used on the left-hand side and Eq. ( 212) on the right-hand side.

For statics problems u = 0 and thus the last term on the first-line of Eq.

( 214) drops out.

Bifurcation Buckling and Eigenvibrations

The following discussion is a review of that associated with Eq. ( 60) for

the buckling of the beam. The calculation of bifurcation buckling loads and
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of modal vibration frequencies can be posed as a problem of determination of

the values of a parameter for which the equilibrium solution is not unique.

In bifurcation buckling problems the parameter is a load parameter, and in

modal vibration problems it is a frequency.

If q0  represents a solution of the equilibrium equations

*i (qo) 0 ( 215)

Then we need to know if

*i(q° + qb) = 0 (216)

b
in which q is a non-trivial bifurcation buckling mode or vibration mode of

infinitesimal amplitude. Following the Newton-Raphson iteration strategy, we

can write

M by" I
Eq 0

J=oq 

(217)

i 1, 2, 3, . . . M

Equations ( 217) are linear and homogeneous. A non-trivial solution qb

exists only for certain discrete values of some parameter contained in the

b
matrix 9*/aq . These eigenvalues are the bifurcation buckling loads or

modal vibration frequencies.
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Variation of Displacements in the Circumferential Direction

In nonlinear problems the loading and the structural response are assumed to

be axisymmetric. In cases involving bifurcation buckling or modal vibrations,

the eigenvectors vary harmonically around the circumference with only one

harmonic participating in each mode. Thus, the modal displacements are
-b

denoted u ,

b b(n)
u 1 u sin n

--b bt b(n)

u = 2 = u2 cos n ( 218)

u b(n) sin n 0
3 3

b b b

where ul, u2 , u3  are the axial, circumferential and radial displacement com-

ponents, respectively. In linear nonsymmetric stress problems, the displace-

ment field ul, u 2, u 3  can be written as infinite series

U U ()sinn + E (-n) cos n 0
n=1 1 n=o

uz= u() cosn e + -O u2(n)sin Inje (219)
n-o n=-1

CIO n=- O

= (n)sinn 0 + E (-n) cosn
n= I n=o 3

These equations are analogous to Eqs. ( 108) for the thin shell analysis.
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Displacement Components Used for Shells, Rings, Solids

In the analysis of the thin shell segments, ul, u 2 , u3  are written in terms

of u, v, w the meridional, circumferential and normal displacement compon-

ents of the shell reference surface. These components are shown in Figure 4 4 (a).

In the analysis of a discrete ring the displacements anywhere in the ring

cross section are ultimately expressed in terms of the displacements u, v, w

of the point on the shell reference surface to which the ring is considered to

be attached [see Eqs. ( .106), ( 107)]. Further details on the elastic-

plastic discrete ring analysis are given in Ref. [ 26].

In the analysis of solids of revolution ul, u2 , u3  are the dependent varia-

bles. These are shown in Figure 44(b).

Strain Energy

General Equations

The strain energy gradient is given by the first term in the integrand on the

right-hand side of Eq. ( 212):

1x6 6X1

- fe S a " dV (220)

where

6x6

Lai = L- e -P C c.T [D] (221)
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c T
in which CP, C , C are the plastic, creep, and thermal strains, respect-

ively, and [D] is the constitutive matrix given later.

The first two terms in the integrand on the right-hand side of Eq. ( 214) can

thus be written

(222)

In the discussion about the Newton-Raphson method, it was emphasized that with-

in the inner iterative loop the material tangent stiffness is held constant.

Since the solution corresponds to an instant in time, the creep strains LeA

and the thermal strains e I are also held constant. The plastic strains

LEP can be expressed in the form

[C!J Lpj4+ Le - Cl[C.] (223)

in which [CT] is the transpose of a matrix which will be derived later.

0The subscript 0 ) in Eq. ( 223) denotes "value obtained when the material

properties were last updated". These values are held constant throughout the

Newton-Raphson iterations. The total strain Lel changes, of course, with

each Newton-Raphson iteration. With use of Eq. ( 223) in Eq. ( 222), and

recognition that , [EJ and CTI are independent of q in the Newton-

Raphson loop, we can write Eq. ( 222) in the form:
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f(LqjTJEDj T o ri 224)

+ [Lo. C To o'- er- eTj [D] a 2E dV

where [D To is a matrix which can be shown to be symmetric,

ToT

[DTo] - [I- CT [D] (225)

The expression (,223) is also used in Eq. ( 221) and Eq. ( 220) so that

a - TDhe I~j + Is;~ T C p - -c ~TJ[DI {4j)dV ( 226)•I dV(26

Derivation of CT
0

This derivation follows Stricklin et al [ 53]. The change in stress at an

instant of time for a given temperature is

{dal} = [D] {de - dep} (227)

The stress and strain components are

Ld•aj Lda, do 2 , do 3 , do 1 3 , do 1 2 , do 2 3 4
(228)

*LdE]J LdeI, d 2 de 3 , de 1 3 , d '12, d'23
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The changes in plastic strain components {dep}, are related to the change in

effective plastic strain by the flow law associated with the von Mises yield

criterion:

{dep} = dJp (229)

where the effective stress a is given by

a = (a [a-2)2 +2 + (a(-a 1
23((230)

2- 3 3(230)

(a2 +a2 + 2a 11
12 613+ Z23 J

and

Lra/boJ L/b/.a 1 l •2 etc.] ( 231)

A change in effective plastic strain dep is related to a change in effective

stress da by

EET
da = T dt• = H d-p (232)

and for small d;, we can write

d9 = L'/BcJ [d(a ( .233)

If we premultiply Eq. ( 227) by LaG/3q] and make appropriate use of Eqs.

( 229) and Eqs. ( 232) and ( 233), we obtain:
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Lb"/BUJ [da)r o H' dse1 = LaiT/bcrJ ED]( (de) ý-t di 234)

We can solve Eq. ( 234) for dip,

d•P = Lý9/lai [DI [di)
H' + LF/'aaj ED] ( 235)

and with the use of Eq. ( '229) we obtain

6x6
[de] [CO] fds] (. 236)

where

H' + Lby/6aJ [D] ( 237)

The matrix C , used in Eq. ( 223), is the transpose of [Co]. In Eqs.
0 0

( 221) - ( 237) the quantity D or [D] is given by

(1- v) v 0 0 0

v (I-v) v 0 0 0

D] V 0(- V) 0 0 0 ( 238)D]=(1+v)(1l-gv) 0 0 0 1'---2v 0 0

0 0 0 0 I-z__ 0
2

0 0 0 0 0 1 -ZV
2

12.7



Equations for Thin Shells, Discrete Rings, Solids of Revolution

The integration over the volume of the structure indicated in Eqs. ( 224) and

( 226) includes portions of the structure modeled as thin shell segments, dis-

crete rings and solids of revolution. Each of these analytical models of the

actual structure has its own kinematic law.

Thin Shells

Each shell segment may contain a number of layers, each layer with its own

orthotropic properties G, El, E2, v12 and each with its own stress-strain

curve. A reference surface is selected; the strains anywhere in the wall are

expressed interms of the strains and changes in curvature of this reference

surface as in Eqs. ( 82), and numerical integration is carried out through

the thickness of each layer by Simpson's rule, with five integration points

being used through the thickness of each layer.

For thin shells the stress and strain vectors given in Eqs. ( 228) reduce to

Lda] Lda1i da 2 ` da1 2 J

239)

Lacj Ld 1 , ds 2, dE 1 2 J

in which "l" denotes meridional direction, "2" denotes circumferential

direction, and "12" denotes in-plane shear. For isotropic materials the

6x6 elasticity matrix [D] in Eq. ( .238) reduces to
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V 01--- t 0 -

E ----- 2 1 0 (240)

0 0 1-V

Equation ( 240) can be derived from Eq. ( 238) by remembering that for shell

theory the stress component a 3 normal to the shell wall is zero. From the

third row of the [D] matrix in Eq. ( 238) one can derive

3 + (. 241)

With use of Eq. ( 241) and recalling that the transverse shear strains 6l3

E23 = 0, one can condense the matrix in Eq. ( 238) to that in Eq. ( 240).

The 6x6 [C ] matrix given in Eq. ( 237) for general three-dimensional plas-

ticity analysis becomes a 3x3 matrix in shell analysis since the stress vector

in Eq. ( 239a) contains only three components. The effective stress in Eq.

( 230) simplifies to

=(az +42 -ala + 3a) ( 242)

Discretization in the meridional direction is by the finite difference method,

as described previously. Figure 21 shows the arrangement of nodal points

used for the discretized shell analysis. As already stated, the energy density

is evaluated midway between adjacent "u" or "v" nodes. The u, v, w dis-

placement components in the neighborhood "E" + Z/2 are expanded in a Taylor

series about the point "E", where the independent variable is the meridional
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arc length s. Thus for portions of the structure being treated as thin shell

segments, Eq. ( 210) might be written in the form

7
u = hi(s)qi ( 243)

i=l1

in which the domain over which Eq. ( 243) holds is the neighborhood "E" + 9/2

and the q, are the 7 nodal displacement components wi 1_, ui, vV, wV, Ui+l,

vi+1 , wi+I indicated in Figure 21 and Eq. ( 115).

The h i(s) could be derived from consideration of the linear variation of u

and v and the quadratic variation of w within each shell finite difference

element as shown in Figure 36. However, the hi(s) are not needed, since

there is only one Gaussian integration point per element. Therefore, expres-

sions such as given in Eqs. ( 110), ( 111), ( 113), and ( 116) are suffi-

cient.

Discrete Rings

If warping is neglected, the strain energy associated with a discrete ring

arises from circumferential strain and torsion. The integrals over the vol-

ume indicated in Eqs. ( 224) and ( 226) have the form

f f f f(x',y')(r + x') dy' dx' de (244)
x'Oy'

in which the (x', y') coordinate system has its origin at the ring shear cen-

ter rs and the limits of x' and y' define the shape of the ring cross

section. The function f(x',y') represents the integrand of Eqs. ( 224)
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or (226). The strain vector contains two elements

Le1 L•hoop, %twistl (245)

and the elastic matrix [D] is given by

Fl 0 1
[D] = Er 246)

0
L 2(1 +.v)

The 6x6 C matrix given in Eq. ( 237) for general three-dimensional plasti-

city analysis becomes a 2x2 matrix in discrete ring analysis since we are only

concerned with the two stress components a hoop' twist*

Each discrete ring cross section can be modeled as if it consists of an assem-

blage of K straight segments of thickness Tk, length Lk, and orientation

angle 1k' k = 1, 2 ... , K. Figure 45 shows an example. The material of

each ring segment may have a different stress-strain curve and different

creep properties. The temperature may vary along the length Lk of the ring

segments but must be constant through the thickness Tk. The integrated ring

properties are determined by Simpson's rule integration within each segment for

all K segments.

Further details are given in Refs. [ 26] and [ 54].
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Solids of Revolution

Isoparametric finite elements [ 52] are used to represent those portions of

the hybrid body of revolution for which shell theory might be inadequate.

The element goemetry is given in Figure 46. The independent variables are

x, 0 and r and the corresponding displacement components are ul, u 2 , u 3 .

This element was chosen because it can adequately predict shell behavior as

long as all eight nodes are present. Hence, it does not create spurious dis-

continuity stresses in the neighborhood of a junction with a finite difference

shell element.

Within the element the displacement field ul, u2 , u 3 and r, x coordinates

can be expressed in terms of the nodal point values and interpolation formulas

written in terms of the local coordinates s, t which vary from -1 to 1:

8 i
(x,r) = • hi(s,t)(x ,ri)

i=l

(247)
8

(u 'u2,u2) hi=l

in which the interpolation formulas hi(s,t) are given along with the kine-

matic expressions and other details in the following section. Integration

over the x-r plane is performed by Gaussian quadrature in which tlenumbers

of Gaussian points in the "s" and 't" directions are input variables. The

circumferential variations of displacement components are given by Eqs. ( 219).
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Details of the Analysis of a
Two-Dimensionally Discretized (Solid) Region

In this section expressions will be derived for most of the components of the

energy functional which appear in Eq. ( 209).

Strain Energy - General

The strain displacement relations valid for small strains and moderately

large rotations are given by Novoshilov [ 55]:

21U1 + 1( 2 2oZ

Fu .nZ + W(•
: 2 2

=) ++ + w2 w2

2 r 3 nu 2 +

C3 7 + a( 1 + W 2)

au 1 u3 W 248)

-13 =";T 1 3

e = nu /r + a - .0 1) *

bu z I
2Z3 IS TrP r (n3"u- )" 2 3

in which the rotation components wl, W2' w3' shown in Figure 46, are given

by
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2 (mi U bu 2

bu bu3249)

2 W = "ux- - nu /r

In writing Eqs. (248) and (249) it has been assumed that

u = u 1 (x,r) sinnO

u = U2 (x,r) cos n ( 250)

U3 = u3 (x,r) sinn e

The kinematic relations ( 248) and ( 249) are consistent with those used

for the shell analysis, Eqs. ( 90) and ( 91).

Within the element the displacement field u1 , u 2, u 3  and r,x coordinates

can be expressed in terms of the nodal point values and interpolation formu-

las written in terms of the local coordinates s,t which vary from -l to

I as in Eqs. ( 247). In Ref. [ 42] the interpolation formulas hi(.s,t)

are given by:
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Delete if node I is not included:

I=5 I=6 I=7 I=8

h = R S/4 -h 5 /Z -ha/Z

h2 = R S/4 -h 5 /Z -h 6/Z

h = R 9/4 -h 6 /Z -h /Z
367

(251)

h4 = RS/4 -h 7 Z -h 8 /Z

h5 = R*S/2

h6 = R S*/2

h7 = RS/2

h8 = RS/*Z

in which

R = l+t R = l-t R

252)
-* 2S = i+s S = -s S = -s

and the numbered subscript refers to node point number in the 8-node isopara-

metric quadrilateral of revolution. The nodes are numbered as shown in Figure

46.
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The kinematic relations ( 248) and ( 249) contain derivatives with respect

to x and r. These can be expressed in terms of derivatives with respect

to s and t by means of

11 
_ 

(253)

where

= x Dr 9rax ( 254)

as 't as at

In terms of s and t the infinitesimal volume element dV in Eq. ( 209) is

dV = JJJ rdsdtdo (.255)

Strain Energy: Nonlinear Axisymmetric Prebuckling Analysis

The kinematic relations for axisymmetric deformations including moderate rota-

tions are obtained by simplification of Eqs. ( 248) and ( 249):

bul I + .W

B2 =

UZ = 3/r

a13
C = 1 + ( 256)

13= br Bx
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in which the rotation component w2  is given by

1 3xz2W -= •- - .-x ( 257)

If we let

dx Br ax a rall = ds a,, = , ýl =• a z =•- ( 258)

then, using Eq. ( 253), we obtain

1 ( - Ul -a1 2  1 2

e =u 3 /r

1259)

1 - 1 u3 Bu 3)+ 1-- -az.1., - + a,,l-bt-+• J

3 j 3

1 1u u3 Bu 3
213 = ( 21 -a 8 a 12-

and

au 1u bu u3 7u3 3

21I + a11  22 a s 12 /t (260)

With use of Eq. ( 247b), we can write Eqs. ( 259) in the form
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B ( 261)

3

13

in which

1 1 2 2 3 3 8 8
Lqj Lu1, u 3 , U1 , U3, U1 , U .... u 1 , U 3 J ( 262)

The superscripts in Eq. ( 262 denote nodal point numbers as shown in Figure

46. The ternms in the 4x16 matrix [B] are

B(1, 21-1) = J(a 2 2 as a •2 at B(1, Z) 0

B(2, 21-1) = 0 B(2, 21)= hj/r (263)

B(3, ZI-1) = 0 B(3,21) aL 1a -7- + al it)

I -a hl bh +h bhB4,Tl
B(4, 21-1) = a + a B(4, ZI)4 (- -E- ( "a,, 1 -2

in which I is the local node point number, I = 1,2, ... 8.

The rotation w2 may be written in the form

2w2 1R7J{q} (264)

138



in which

R(21-1) = B(4,21-l) R(21) = -B(4,21) (265)

The hI in Eqs. ( 263) are given by Eqs. ( 251).

Using Eqs. ( 255), ( 261), and ( 264), we can write Eq. ( 224) in terms

of the nodal point displacement components. The first and third terms in

Eq. ( 224) are expressed in the combined form

(LA SJ EDT J+La]J ) at*q ~ ~ 266)

where

LA_ L1 = L p c [D] (267)

in order to save computer storage space and to reduce the number of calculations

required to obtain the stiffness matrix. Equation ( 224) thus becomes

B 2 U = t IX x4 1x4 R ,

bq -= I As k E Atk I A( [DTo] T) + a.Lk =1 kt=l ,i
139 0 268)

+ LB J[D IB~ + LBJ TD0
To To + LB. ED 1
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(268
+ Lw R , 0W R.j, oJ [D To] B cont'd)

t wR+ L w2•, o, w•.,j 0J [DTo] wRi ~

2 02 T W0 kt, ks

in which Ask, Atk are Gaussian integration weights; Ks and Kt are the

numbers of Gaussian integration points in the s and t directions; Ri

is the ith member of the vector LRJ given in Eq. ( 265); LB•J is the

transpose of the jth column of [B]; and {Bi} is the ith column of [B]

All terms in Eq. ( 268) are evaluated at s and t corresponding to the

G aussian integration points (Sk tkt in the element. Equation ( 268)

is analogous to Eq. ( 68) in the curved beam analysis.

Equation ( 226) can be written in the form

K K

BU 2T sLeJ[ + A(j)
=1_ ET Ask (( i DTo 1+ajý 1

k =k 1 kt=
( 269)

+ (LAeJE[D To + LaJ) R~~)
0]k t' ksa

In the axisymmetric prebuckling analysis the terms in Eq. ( 268) contribute

to the left-hand side of Eq. ( 213) and those in Eq. ( 269) contribute
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to the right-hand side of Eq. ( 213). Equation ( 268) represents a contribu-

tion to the (i,j)th term of the local stiffness matrix for a single solid

element of revolution. The entire local stiffness matrix is obtained by

variation of i and j to cover all 16 nodal degrees of freedom associated

with that element. The stiffness matrix of the entire solid axisymmetric

structural segment is obtained by assembly of other local matrices derived for

other solid elements. Equation ( 269) represents the negative of an analo-

gous contribution to the "loading" vector.

Strain Energy: Nonsymmetric Analysis

Linear Nonsymmetric Stress Analysis

The linear solution can be thought of as the solution obtained after one

Newton-Raphson iteration with zero used for the starting vector. Thus, Eq.

( 213) holds and Aq now represents the entire linear solution, not just

a correction vector. The strain displacement relations ( 248) should be

linearized. For each circumferential harmonic these relations have the form

sin n 0 cos n 9

6xl 6 x24 sin n 0 cos n 2

[B]= B q) sinne n cos n 0 270)

cos n 0 sin n 0
coo n 0 sin n G

with Le given by Eq. .228b) without the d's, and

1 1 1 2 22 8 88 (271)
Lqi Lu1 U U U1, U U . . . . U1 1 UZ UJ

141



Equation ( 224) becomes

'LB. 6x6 jr
T__- As% -- Atk LBjJ [D] [Bi] 13lr 272)

1qibqJ k kt=1 kt, ks

in which the subscripts kt,ks signify "evaluated at the Gaussian integra-

tion station (sk, tkt).

Equation ( 226) becomes

1 AsA k [LCtT j273)

kS = tl 
kS

in which [D] is given by Eq. ( 238). If n=0 the factor 7r should be re-

placed by 2ff. The 6x24 matrix [B] is given by

B ( 1 , 31-2 ) = - a22 as a 62 -

B(1, 31 - 1)= 0 B(1, 31)= 0

B(2, 31 2) = 0 B(Z, 31 -1) = -nh/r

*B(Z, 31) h h/r

*B(3, 31 -2) = 0 B(3, 31 -1) = 0 (274)
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1B __ 31) ( 274

B(3, 3 21 s 1 cont'd)

B-(4, - -2) -21 as +

B(4, 31 - 1) = 0 B(4,31) 1 (a b- -a a2

B(5, 31 - 2) = nh0 r B(5, 31-1) = (a 2 2  h -a 1 2
-- (22 a s 1 •'t)

B(6, 31- 2) = 0 B(6, 31- 1) (a a21 + al __ _hi/r

B(6, 31) = nh/r

in which I 1,2,3, ... 8, refers to the local node point number; hI is

given by Eq. ( 251); and a11 , a1 2 , a2 1, a2 2  are given by Eq. ( 258) with

use of Eq. ( 247a).

The deformations due to a general nonsymmetric load are calculated by super-

position of deformations of the form ( 250) or, if n is zero or negative,

of the form

u'u 1 (x,r) cosnO;u 2 =u 2 (k,r)sinInIE; u3 =u 3 (x, r) cosne ( 275)

corresponding to each harmonic of the Fourier series representation of the

load.
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Equation ( 272) represents the contribution in the nth circumferential har-

monic to the (i,j)th term of the local stiffness matrix for a single solid

element of revolution. The entire local stiffness matrix is obtained by varia-

tion of i and j to cover all 24 nodal degrees of freedom associated with

that element. The stiffness matrix for the entire axisymmetric solid region

is obtained by assembly of similar local matrices derived for other solid ele-

ments in the two-dimensionally discretized structural segment.

Nonsymmetric Vibrations and Bifurcation Buckling

The starting point for this derivation is Eq. ( 224) with Eq. ( 266). The

(i,j)th element of the stablity or vibration stiffness matrix is given by

21cbq i •q q=qo f aq i

( (276)

+ 1 ,be/q IDT t j11 rdsdtde)

/q=qo0

In the bifurcation buckling and vibration analysis the term AC in Eq. ( 266)

is zero because the stiffness matrix is evaluated at q=q0 . Therefore, e=c
0

in the first term in Eq. ( 266). The six-element vector Lao is given by

Lao] = 110' '20, 030' '130, '120' '2301 ( 277)
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in which the first four components are calculated from Eq. ( 267) and the

last two components are zero if the axisymmetric prebuckled state is torsion-

less.

As in the shell analysis (Eq. ( 215)] the strain vector can be divided into

three parts:

LeA = L~ýO)A + F(l)j + E:(2)j (278)

where superscripts(i), i = 0, 1, 2 indicate zeroth, first and second order
b b b b

in the infinitesimal buckling or vibration mode q b U, u2 , u3 . The zeroth

order represents the axisymmetric prebuckled state. The first and second order

terms, derived from Eqs. ( 248), are given by

20 2

u b,/. /r -nu b /rsi n 0• ••2 3 n

(1) (u r +) soin

(3-' + 20- Ir 2 cosne

145



1l(b 2  2 b2 2
1 W ? sin ne0 + W3 cos n

(Z) 1 (w+ w3 cosz n

e(2 2 (W 2 cos2 12 0O+ W~ b sine)

280)_ b Wb• cos ZnO +• i
b b= (2 "..I w3 cos nO

1(2) 1 b 2 sinne cosne

(2) b b sin n cos n 0
23 2 3

Equations ( 279) and ( 280) are based on the assumption that

b b
uI = u1 (x,r) sinne

b b

u = u2 (x,r) cosne ( 281)2 2

U3b = u3 (x,r) sin no

Two of the prebuckling rotation components w10  and w30 are zero because

the prebuckled state is axisymmetric and torsionless. The prebuckling shear

terms a120 and a230 are also zero. Hence, the circumferential coordinate

e can be separated from the other independent variables s,t in the usual

way, thereby leading to reduction of a three-dimensional phenomenon to a num-

erically two-dimensional analysis.
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2 b b
It is clear that only (2)j will contribute terms to the vector [a e/aqi 3qJ

and only L(1)j- will contribute terms to the vectors jac/gq JI and LEs/jqJ.-

As in the case of the thin shell theory, we can write Eq. ( 279) in the form

sin n 0
S6x24 6xZ4 sin n 0

(1) = [ + 60 [B q b sinin ( 282)
3 [ 1] + 0 B2I/f sin n 0

cos n 0
cos n 01

in which [Bl] is given by Eqs. ( 274) and [qb I is

Lb bl b bl b b2 b3 b8 b8 b8

Lb=LuI , u, u 3 , u 1 31u2 u3p . . .. ,U1  ,U u 3 J ( 283)

The matrix [B2 ] is derived from Eqs. .279), C 249), ( 247), and ( 253)

1 /2 -- + BMI i I
* (1, 31- 2) = a., 'I h a 1 1 ;3- B(1, 31 - 1) = 0

B* (1 , 3 1) - 1 / hz - i - )

2 (a2 s -2-t

*2(2, 31- 2) = 0; B 2 (Z, 3K-1) = 0; B 2(2, 31)= 0

B (3, 31- 2) = B (1, 31- 2); B 2 (3, 3- 1) 0

B 2 (3, 31) = B2 (1, 31)

B 2 (4, 31 -2) 0; B2(4, 31 - 1) = 0 B 2 (4, 31)0 ( 284)
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B (5, 31- 2) = 0 ( 284
2 cont'd)

B (5, 31 - 1) = h /r + (a.,- a~l + a 12 II at1

B* (5, 31) = - nhI/r

B (6, 31 - 2) = nh 1/r

B (6, 31- 1) = . - Z as (-a 12 -

B (6, 31) = 0

After integration over 0 in closed form and numerical integration with re-

spect to s and t, we obtain Eq. ( 276) in the form

KsK t b b

+2b b a W' + 3 aUb bb .

la U ~ 17 As ~ 1 3 2
20~b b E - +030 b7 O ~qý b b ab

S6qq q kqj 6qb b b bb

( Ij + 3 3+a2

130 b b b b /B 
( 285)
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] (285

+ L bq b /Býj [:B +~ B I T [DT [B1 + W 2 B bJ ~1b !JIr] c Id

k )] Jso kt

In Eq. ( 285) W b , b are given in Eqs. ( 249) with superscript ( )bIn ~ ~ Eq2(25)1' 3

added; 010, 020' 030' a130 are the stresses associated with the x, e, r, xr

directions, respectively; [D To] is the 6x6 constitutive matrix including

effects of plasticity [Eq. (. 225)]; and w20 is the prebuckling rotation

component analogous (but with opposite sign) to the meridional rotation ao

of the shell. Note that Eq. ( 285) is valid only if the terms D Tol5, DToI

DTo25, DTo26, DTo35, DTo6 DTo4 D To6 in the constitutive coefficient

matrix [D To] are zero. If these terms were nonzero, one would not be able

to separate variables as has been done.

The terms in Eq. ( 285) multiplied by a10' '20' a30' and '130 can be

expressed in the form

24x3 3x3 3x34 f b1

3qb/aq j [R]T [Go] [R] 286)

in which [o ] is given by

3x3 (020+030) 0 0130

[00] = 0 (010+030) 0 287)

-0130 0 (Gl0+Y20)

and [R] occurs in the transformation from the rotation vector
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b b

to the nodal degree of freedom vector, qb1:

3x24
{} = [ b ( 289)

The matrix [R] can be derived from Eqs. ( 249) with use of Eq. ( 253).

The derivatives of the nodal degree of freedom vectors Lqb/ q b and

3qb/3•qb are simply

ix 2 4
[qb/aqbj = L, 0, 0, ... 0, 1, 0, 0, ... (290)J~q __ 0_. ._2 0

corresponds to
d.o.f. number "J"

ix24
b b 0 0Lbqb/aq•J = L, 0 ... 0, 1, 0, 0, "'d ( 291)

corresponds to
d.o.f. number "i"

so that

ix24 24x3 ix3
Sqb/aq [. = T ER

3x24 24xl. 3x1

[R] = D( 292)

150



Similarly,

ix24 24x6 1x6
Laqb/DqbJ [B1 + W 2 0B2]T = L.( "2oB)-

24xi( 293)
6x24 24x 6xl

[B 1 + w20 B2] {-3-} {(Bl + W 202B)2}

Using the expression ( 286) and Eqs. ( 292) and ( 293) in Eq. ( 285), one

obtains

b u b - k 1
b b Tr ASk Atk [R., Ii

aqi aq 3 ks=1 kt=l

q~q 0(294)

+ Lf l + w2 0 2) [D T o ' J (B I + W2 0 B 2 Q i ] IJI •i k k
+ JBI1 +C 20B2)j[ ks B1 +w~B).kt~r 24

In modal vibration analysis Eq. ( 294) represents a contribution to the local

tangent stiffness matrix for a solid finite element of revolution that is loaded

by stress components 10, a20' a 30' 0130 and deformed by rotation w2 0 " In

bifurcation buckling analysis the loading is divided into two parts, as de-

scribed earlier [see Eq. ( 122)]:

f

Pnb = P + XAp 295)

and the prebuckling rotation Aw20 associated with the load increment Ap is
f f f

neglected. Assuming that the 'fixed' part p gives rise to a, f 20 and

the increment Ap gives rise to Ao, oA20' one can write Eq. ( 294) in

the form
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k
a K k K k k 296)

3q b Dq b ij lij + XK 21j
i j ,

in which k denotes finite element number. The (ij)th termof the stiff-

ness matrix K k is given by
lij

k s t kj r(sg ttg)kK lij AS k At k J(s 9 't 9)
k s =1 s kt I t

297)

k

X L(B + W f B j I [D w f B + ff. I Icy f fRl1 0 2) To] ý(Bl + 0 2),ý .3 0

Is 9 lit 9

and the (ij)th term of the load-geometric matrix K k is given by
2ij

k s t tg)kK 21j I AS k I At k t lj(sgtg)k I r(sgk S =1 s k t =1

k 298)

x CR [Aa 0 ] fR-,l

s 3-t1 9 9

where superscript k indicates finite element number and s 9 't 9 indicate the

(st) coordinates of the Gaussian integration point. One can readily see the

analogy betweenEq.( 297) and 298) for the two-dimensionally discretized

solid of revolution with Eqs. 136) and Eq. ( 137) for the thin shell.

The local stiffness and load-geometric matrices for the isoparametric quadri-

lateral 8-node elements of revolution are dimensioned 24x24, whereas those for

finite-difference shell element are dimensioned 70.
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Kinetic Energy

The kinetic energy in Eq. ( 209) has the general form

1 (V .__

T = j ru dV (299)

in which m is the mass density and the total displacement vector u is the

sum of the axisymmetric prestressed state u and the infinitesimal vibration
-bo

mode u-b

-- - --b + sinn e

0 + u (x, r) ! or e (.300)
cos n e

Since the prestressed state is static,

I -..b )/(in ne0
u =i0) U (x, r) or e1it ( 301)

Cos nf

For the calculation of vibration modes and frequencies one needs the matrix

[21T/Dqi qj]; ij, = 1,2,3, ... N, where N is the number of degrees of
-b

freedom in the vibration problem. Recalling that u is a linear function

of the nodal degrees of freedom q , one can write

22T f b nO /

b•l bj =-G r or
b. -q cos 2n )dV (302)

The displacement field in the quadrilateral isoparameteric finite element is

given by Eq. ( 247b), Therefore, Eq. ( 302) can be written in the form

T -D2 7Z m h.(s,t) h.(st) IJIrdsdt (303)

]t
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The integrals in Eq. ( 303) are evaluated by Gaussian quadrature. The local

mass matrix is dimensioned 24x24.

Body Forces

The term in the energy functional ( 209) related to body forces is

f 8 UdV - dV 8 q (304)

V fV

If the displacement vector u is a linear function of the nodal point degrees

of freedom q, the body force term generates contributions only to the first

variation *i of the energy functional. It is assumed here that body forces

are due to rigid body accelerations of the center of mass, angular accelera-

tions about the center of mass, and angular rotation about the axis of revolu-

tion. Figure 47 shows a body of revolution with components of translational

acceleration ax, ay, az and rotational acceleration wx9' oy' , . In order

to transform Eq. ( 304) into a form suitable for programming, one must have

the local components of acceleration g1, g2 ' g3  corresponding to u , u2 , u 3

at a point at a radius r from the axis of revolution and a distance d from

the yz plane in which the center of mass is located. These components, in

terms of ax, ay, az, Wx' x , are

9 ~a +r((n sine- w cos e)

g2 = rJx + (az -d!y) sin e- (ay + ddz )cose ( 305)

2g3 = rW - (a+ d!) sine0(a .- d )cosO

y
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Equation ( 304) can be written in the form

j pb' 6u'dV = f (rng, 6u 1 + mg 2 6u2 + mrg 3 6u 3 ) dV 306)

V V

Since ul, u 2 u 3  are functions of the nodal degrees of freedom q, Eq. ( 306)

can be written in the form

f b dV f /2 6U3 dV (307)

v V M in 'U1 + g? 'F4 g )

after cancellation of 6q.

In general the displacement field ul, u2 , u3  can be expanded in the trigo-

nometric series as in Eq. (. 219). Because g g21 g3  contain only terms

independent of e and terms which vary as sin 0 and cos e , only the terms

in Eqs. ( 219) with n=0 or n=+l contribute to Eq. ( 307). After per-

forming the integration with respect to e, one obtains for the right-hand

side of Eq. ( 307)

For n0O:
M( au(O) bu(0) (0)

da /r U c1 (308)
nTT w / rdxdr

For n = + 1:

1f r[r "(ay + + rdxdr 309)

For n = - 1:

TTf f m [r ý 1 + (a.-d 3  (3q - )]rdxdr (.310)
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Thin Shell Segments Body Forces: The displacement components ul, u 2 , u 3

are assumed to be constant through the thickness. In terms of u, v, w

(Fig. 44(a)], ul, u 2 , u3 are

uI = u(r/R2 ) - wr'; u2 = v

311)

u 3 = ur' + w(r/R 2 )

Furthermore u, v, w can be written in terms of the nodal displacement quan-

tities

LqJ = Lwi- u,, vi, w, ui+, v WiJ ( 312)

by means of Eqs. ( 114). The double integration indicated in Expressions

( 308) - ( 310) is replaced by single integration along the shell meridian,

and the quantity m is interpreted as the mass per area of shell reference

surface.

Solid of Revolution Body Forces: The displacement components ul, u 2 , u 3

are written in terms of the nodal degrees of freedom by Eq. ( 247b). If the

right-hand side of Eq. ( 247) is used in Eqs. ( 308) - ( 310) and the

(x,r) integration is transformed into (s,t) integration according to Eq.

( 255), the contributions of the body forces to the loading vector of the

discretized problem are obtained.
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Surface Tractions on Solid of Revolution

The term in the energy functional ( 209) related to constant-directional sur-

face traction is

J F -8u dA or f dA q 13 313)

Area A

As with body forces, this term generates only contirbutions to T..I

The three components of external surface load Pt' Pc' Pn' acting on a solid

region (one element in this example) are shown in Figure 48. These posi-

tive values form a right-handed system.

The work done by the surface tractions acting over an elemental length dZ

(shown in Figure 48) is

dW = (Ptd9ut + pcdZu 2 + Pndkun) rde (314)

in which the normal and tangential displacement components un and ut are

given by

U U dr + dXn= + 3 d

U dx dr 
315)

ut 1 Te -• 3 Tr

The elemental work done is therefore

dW = [pt(u 1 dx + u 3dr) + pcdZu 2 + pn(-u 1 dr + u3 dx)] rde ( 316)
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The variables that appear in Eq. ( 316) can be written in terms of the local

coordinates (s,t) of the element by means of Eqs. ( 247) and the relation-

ships

dr = b-rds + Bdt; dx = bs - -- dt 317)

The finite element depicted in Figure 48 has four faces, labeled Q' Q '

Q', G On each of the faces the work done by the surface tractions can be

shown to be given by:

On Face r: s = +1.0, t varies

8
WG =T r rk Atk •-h 1 (+1, tk it 1 3' t c2 , Y

© = k=1 k j= (1 , t1? I-Pt (u'j x. t + u' r,t) + pcu4 (ýZt+ x t)

+Pn Ul r, t U xy ] 318)

On Face . : s varies, t = -1.0

8T . i 2
W 7 =rkAsk h[ (Sk,-I) "Pt IX + u r, + PU2 + X2

S=t S 3C

+ P UI r - u x, ) 319)
,i s
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On Face 3: s = -1.0, t varies

W _rk Atk i hi I'tk) P 1 xt + t +PU ix

u , + JX

On Face 4: s varies, t = +1.0

W,= T rkAs k hi(sk, +1) ptB kI -+ur, + p4r'xs)2'=I "= s PU + x, X

+ Pn (-iIr,s 3  ( 321)

2

In Eqs. ( 318) - ( 321) the factor w arises from integration of cos ne or

sin2 n from 0 to 27r. If n=0 this factor should be 2w. The quantities

Atk and Ask are the Gaussian integration weight and Ks, Kt are the numbers

of integration points in the s and t directions, respectively. Subscript k

here denotes a quantity evaluated at the kth Gaussian integration station. Sub-

scripts ( ) s and ( ) t denote differentiation with respect to the local

element coordinates s and t.

The contributions to the loading vector are obtained from Eqs. ( 318) - ( 321)

by differentiation of Wc through W with respect to the nodal degrees of

freedom.
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Of course, in a solid region consisting of many finite elements, only those

elements with faces exposed to external surface loads yield contributions to

the global loading vector.

Following Pressure for Solid of Revolution

The relevant term in the energy functional ( 209) is

6Ws= - e7 • [f(u)]dA (322)

SArea

The term arises from the fact that the direction of the pressure may change as

the structure deforms. As derived in the discussion associated with Eqs. ( 169)

through ( 171), the so-called "live-load" terms in the energy functional are

quadratic; they contribute to the stiffness and load-geometric matrices.

The expressions for each face of the isoparametric quadrilateral can be derived

from the nonlinear terms in Eq. ( 169) with 1/R1 = 0, with the meridional arc

length element ds replaced by dk (see Figure .48), and with use of the trans-

formations ( 315), ( 247), and ( 317). For any of the four faces it can be

shown that after integration with respect to e, W' is given by

= T f (X,, ds + xtd) Ul +u 3 A -P( X, dS + x, udtU

ace

(323)
)ds + p r d dr +Uu d-)

-2(Pn,,s Pn,t t di + u33d") r+u3
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Differentiating with respect to the nodal degrees of freedom qi and qj,

one obtains

b___ Iw*b dr 21__ 3____

TT . x, sI x, ,dt) 1d

+ -u3 E p (x, ds + x, ct~ dt uzb

bq bqj Uceb

( 324)

-p ds + p dt ) r[(u dx + b3 dr bu dr + u3d
[3

_q 3q dx 7

+bqj d£l b qj d•/ Ut I£ Tc-

In analogy with Eqs. ( -318) - ( 321), the following conditions prevail on the

four faces of the quadrilateral element:

On Face (5): s = + 1.0, ds = 0, t varies, dt is negative

dr/d= -rt / (r. t + x't )2 dx/d, = -x, t/(rt + x, t )z

On Face 2 : s varies, ds is negative, t 1t. 0, dt=t

2 +
dr/d)c = -r, Is(r, + x,1 ) dx/dI = -x, l(r, + x, )

On Face s = -1.0, ds = 0, t varies, dt is positive
dr/d2~~~~ + ?/rZ+ ~) t )

dr/d= +r; dxd = x,t/(r, + x t

On Face s varies, ds is positive, t = +1.0, dt = 0

dr/dL = + r, s/ (r, + x,) dx/dU=+x, s/(r,2 +x, B
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The derivatives au/aq and r,s, r~t, X' s, xt can be obtained from Eqs.

( 247). The integration in Eq. ( 324) is carried out by Gaussian quadrature

as with Eqs. ( 318) - ( 321).

Constraint Conditions for Junctions Between Thin Shells and Two-Dimensionally
Discretized Regions

The relevant terms in the energy functional (2.209) are

6U = 6 xL a kto+a ) + u) ( .325)C = =I a'k A =Iak ''

These terms contribute to Ti [Eq. ( 212)] and aTi /Iqi [Eq. ( 214)]:

k= A!= IX= c

ic . a kk n .aLuk k 3k I n + a(u

E 2.CE - EU E a U
a2j-k Fqj + Ak a%~*~ 337)

Figure 49 shows a junction AB between a thin shell segment and a two-dimen-

sionally discretized region. At the junction u*, v, w*, and ý at the end

of the shell reference surface must be equal to u1 (sj~tj), u 2 (sjitj), u 3 (sj,t )

in the "solid" region and a rotation derived from the differences of un. (Sub-

script "n" denotes "normal to the junction line A.'and superscript "i" de-

notes "ith nodal point on the junction line AB".) The coordinates s. and t.J J

coincide with the end of the thin shell reference surface on the line AB. In

addition, all nodal points lying along the junction line AB must be constrained

to remain on a straight line normal to the shell reference surface as the struc-
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ture deforms. This is accomplished by imposition of appropriate constraints on

differences of un for compatibility and uniformity of the meridional rotation

0 of AB and constraints on differences of u2 for compatibility and uniformity

of the rotation T of AB about an axis through sj,tj parallel to the meridi-

onal direction of the shell reference surface. The length of AB is free to

change, of course, since there should not be any constraint preventing strain

normal to the plane of the thin shell reference surface. Thus, typical con-

straint conditions at a junction line AB are:

u= U1 (sjtj); V = u2 (s ,t); w = u 3 (s j,

7U '/L T +( 4 u7)/
nu n 74)/ - u2 )ZL 7 4

33 4 3
nu - U4 )IL = +(u 2 - u2 )/L 3 4  (.328)

(un u 4 )/Li4; T + +(u 4 -u u)/Li

n n i4 - 2 Z i4

in which

i= u sin + ul cos
n 1

L.. = [ (xi -x.)2 + (r.i- r.)] 1/2 29
(J 1 1329)

0 = w' - u/R 1  Shell wall
rotations at

= (1/r)bw/le - v/Rz (s., t.)
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and superscript i denotes any node on the junction line AB. For each such

junction, therefore, there are 3 + 2(k - 1) constraint conditions, where k is

the number of nodal points on the junction line AB. The sign for T in Eqs.

( 328) as well as the nodal indices in all of the equations depend on which

end of the shell segment and which faces of the two-dimensional finite element

are involved in the junction.
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Section 5

LINEAR EQUATIONS FOR GENERAL SHELLS

The purpose of this section is to summarize certain aspects of the more widely

used linear shell theories, to explain where the differences originate, and to

comment on the significance of these differences to the engineer or designer

of shell structures. Much of the material here is abstracted from Leissa's

excellent survey given in chapter 1 of his monograph Vibration of Shells

t56 ].

Introduction

Whereas in thin plate theory the differential equation of motion is univer-

sally agreed upon, the same cannot be said for thin shell theory. Differences

arise from different simplifying approximations and different points in a deriva-

tion where a given approximation is introduced. The more commonly referred to shell

theories are those by Donnell [ 57, 58], Mushtari [ 59, 60], Love [ 61,

62], Timoshenko [ 63], Reissner [ 64], Naghdi and Berry [ 65], Vlasov

[ 66, 67] , Sanders [ 68], Byrne 1 69], Flilgge [. 70, 71] , Goldenveizer

[ 72] , Lur'ye [ 73], and Novoshilov [ 74]. All of these theories result from

Love's "first approximation" and apply to shells of arbitrary curvature. For

comparisons of various thin shell theories the reader is referred to the work

of Leissa [ 56], Koiter [ .75], Goldenveizer [ 76], Klosner and Levine [ 77],

Naghdi and Berry [ 65], Kraus [ 78], Naghdi [ 79], and Kalnins [ 80].
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Concepts from the Theory of Surfaces Needed for Shell Theory

The essential feature of thin shell theory is the complete characterization

of stress and deformation throughout the three-dimensional domain of the

shell wall by knowledge of the deformation of a reference surface. The expres-

sions for stress and deformation throughout the domain therefore depend on

parameters of this surface, such as its original shape and the extent to which

it has been stretched and bent.

Surface Coordinates

In order to measure deformations of a surface, we must attach a two-dimensional

coordinate system to it. Fig. 50 shows such a coordinate system and its

relationship to a three-dimensional system fixed in space. Any point on the

undeformed surface may be located by a vector

r = r(a,ý) ( 330)

in which a and $ are independent coordinates of the surface. A system of unit

vectors1 , iV i T' parallel and normal to lines of constant 0 =o and constant

a= 0 is depicted in Fig. 50. These so-called "base" vectors are given by0

i- = r,a/A, a /B; n = x )/sin y 331)

in which ( )a and ( ) indicate differentiation with respect to a and ;

A -I r,a1; B =_ I r, 1; and y is the angle between the surface coordinate

lines.
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First Fundamental Form

Three of the surface parameters needed for characterization of surface deforma-

tions are the three coefficients of the first fundamental quadratic form,

which is derived from the square of the length of an infinitesimal arc

dr•= r, dc + , d$ =d ( 332)

lying in the surface. The square of dr is a scalar quantity obtained from the

dot product dr. dr:

-- 2 2 2 2 2(3 )

dr.dr= ds = A d2 + 2AB cos y dada + B d2 333)

The three coefficients of the first quadratic form ( 333) are essential, for

example, in the derivation of strain due to stretching of the surface. The

engineering strain components expressed in terms of surface coordinates are

found by comparing ds2 for the undeformed surface with ds*2 for the deformed

surface, with the location of the deformed surface r* = r*(c,8) being expressed

in terms of that of the undeformed surface r plus displacement components

u, v, w in the directions of the base vectors i , 1, ir:

r* = r + ui + Vi + wi ( 334)

It can be shown [ 74] that for orthogonal coordinate lines these reference

surface strains are given for linear theory by
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1 Du v 3A w
Ce A ýO+ AB 3 R

u 3B 1 v we8 =--A- B +-R 335)

e AB h + A
BT(U)A B

in which e and e are the strains in the i and i directions, respectively,

and e 0 is the in-plane shearing strain, a measure of the change in angle be-

tween the a and ý coordinate lintes. All shell theoreticians agree with

Eqs. ( 335).

There are differences of opinion, however, as to the expressions for the change

in curvature and twist of the reference surface as it deforms. A derivation

of these expressions reqcuixes what is called the second fundamental

form.

Second Fundamental Form

The second fundamental form has to do with the curvature and torsion of the

surface coordinate lines. Leissa [ 56] presents a derivation of an expres-

sion for the normal curvature 1/R of any line element lying in the reference

surface
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1 Ld 2 + 2Mdadý + Ndý 2  2 336)

ý A2dc2 + 2AB cosydcdý + B d2

in which the numerator on the right-hand side is the second fundamental

form with coefficients L, M, and N given by the dot products

L = r, ac* i; M = r, . i ; N = r, i ( 337)

The normal curvatures of the a curves and 8 curves are obtained by setting

either dý or dc in Eq. ( 336) equal to zero:

R = -L/A2 R -N/B ( 338)

By "normal curvature" is meant the curvature of the line formed by intersec-

tion of the surface with a plane normal to it at the point (C,3).

In the comparisons of shell theories given by Leissa [ 56] it is assumed

that the a and ý coordinate lines are lines of principal curvature of the

undeformed surface, that is, they are characterized by cos y = 0 and M = 0.

A Shell: A Surface with Finite Thickness

The shell theories developed in Refs. [ .57] - [ 74] are formulated consider-

ing an element such as shown in Fig. 51. An infinitesimal slice of thick-

ness dz located a constant distance z above the reference surface has the

following geometrical properties:
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Lengths of Edges: ds (z) = A(l+z/R )da ( 339)

ds (Z) = B(l+z/R )dý

(z) (z) (z) (z)
Areas of Edge Faces: dA = ds dz; dA = ds dz ( .340)

Volume: dV(z) = AB(I+z/R )(l+z/R ) dqd~dz ( 341)

Inclusion or neglect of the terms z/Ra and z/R8 in Eqs. ( 339) - ( 341)

gives rise to many of the differences in the various shell theories. Differ-

ences also arise between two theories both of which include these z/R ef-

fects initially but which use different simplifications involving neglect

of z/R compared to unity later in their derivations.

Love's First Approximation

Love [ 61] made the following approximations in his classical linear theory

of thin shells:

(1) The thickness of the shell is small compared with the smallest

radius of curvature of its reference surface.

(2) Strains and displacements are small. Hence second-order

terms in the strain-displacement relations may be neglected

in comparison with first-order terms.

(3) The transverse normal stress is small compared with the other

normal stress components and may be neglected.

(4) Normals to the undeformed middle surface remain straight and

normal to the deformed middle surface and do not change in

length.
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These four assumptions constitute what Love called his "first approximation"

shell theory. The approximations are almost universally accepted in the

derivation of linear thin shell theories.

The first assumption gives the )w%6on d'letIe for a discipline called "shell

theory"; the second justifies linearization of the theory; the third re-

stricts applications of shell theory to situations in which rates of change

of phenomena and geometry with respect to surface coordinates a and S have

characteristic lengths that are large compared to the shell thickness; the

fourth permits the reduction of a fundamentally three-dimensional problem

to one or two dimensions and is equivalent to neglect of transverse shear-

ing strains. The fourth assumption,known as Kirchoff's hypothesis, re-

stricts the applications of shell theory in the same way as the third.

Several authors, including Leissa [ 56] point out the inconsistencies

in the four assumptions with Hooke's law. For example, if the normal liter-

ally could not change in length at all, then for an isotropic material a

considerable normal stress an=•(• + a5) would be generated by uniform bi-

axial stretching of a plate. This normal stress, arising from the

Poisson effect, would not be negligible compared to the in-plane stress.

Conversely, if the normal stress is small and the in-plane stress is not,

then the normal must change length. Similarly, from Hooke's law, the

Kirchoff postulate implies zero transverse shear stress. However, the shell
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element cannot in general remain in equilibrium without transverse shear

force resultants (which are the integrals of the transverse shear stresses

over the wall thickness) acting along its edges.

These inconsistencies do not, of course, seriously diminish the value of

shell theory as an engineering tool. Emphasis on them represents an un-

fair misinterpretation of the mathematical model. The inconsistencies can

be deemphasized by introduction of the following two approximations to

replace the third and fourth above:

(3a) The work done by the maximum normal stresses acting through a

distance equal to the maximum change in length of the normal and the work

done by the maximum transverse shear stress acting through a distance equal

to the maximum transverse shear strain times the thickness are negligible

compared to the total change in strain energy during deformation.

(4) The displacements in planes parallel to the reference surface may

be calculated as if the normal to the undeformed reference surface re-

mains straight and normal and unextended during deformation of this surface.

The apparent inconsistencies can also be de-emphasized (as they deserve to

be - at least by engineers) by introduction of a corollary rule stating that

the average normal stresses and transverse shear stress resultants must be

calculated from considerations of equilibrium rather than directly from the

kinematics embodied in the Kirchoff hypothesis.
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As a result of the Kirchoff hypothesis, the displacements U, V, W anywhere

along the normal to the reference surface can be calculated from

U(c•,8,z) = u(a,) + ze (c,$)

V= v(a,B) + ze (U,8) (342)

(, w= (X,

in which Leissa [ 56] gives

u 1 vW1W,; e6 = R - B W' 343)

Differences in the Kinematic Relations for Reference Surface Deformation

As stated above, all shell theoreticians agree on the expressions ( 335)

for the strains of the reference surface. However, there are differences

in the various theories for change in curvature Ka K and twist K U. These

expressions are listed in Tables 5 and 6.

Change in Curvature K -K . Except for the expressions by Donnell and

Mushtari, there is general agreement among the various theories concerning

curvature changes K and K . The expressions of Vlasov in Table 5 differ

from those of Byrne, Fltgge, Goldenveizer, etc., only in terms of order

e /R , eV/R, this small difference arising from replacement of 1/ (l+z/R,)

and I/(l+z/Rs) by their series expansions.
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The Donnell-Mushtari expressions differ in a more fundamental way from the

others in that they are bbtained by neglect of terms containing tangential

displacements u and v. A simple example will show that for certain com-

monly occurring cases of great engineering significance the Donnell-

Mushtari expressions are not sufficiently accurate. Suppose that we con-

sider inextensional deformations of an infinitely long cylindrical shell

of radius R. For a cylinder the surface coordinate 0 can be identified

with the axial coordinate x and the surface coordinate 1 with the circum-

ferential coordinate e. Then

A = •r, al = Irx' 1 1.0; B f r',i Ir,•i R ( 344)

R = co; R R
a;

The displacement components, u, v, w are the axial, circumferential, and

normal (outward) displacements of a point on the cylindrical reference sur-

face. Suppose that for the infinite cylinder we have displacements u = 0

v = vncosne, and w = w sinnG, in which vn and w do not depend on x. Fromnn n n

Eqs. ( 335)

1 w. W 1ee= ex= u' = 0; e= e 9= R v + -R =R (-nv n+w n)sinn9

e1 + V' = 0 345)
e ex9 R

For inextensional deformations
1

ee = -(-nv + w ) sinn9=0 (= 346)8 R n n

which leads to

Vn = wn/n (, 347)
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From Table 5 and Eqs. ( 343) the curvature change expressions of

Byrne, Fligge, etc. yield

K= K = -W" ; K =K= (' -w) 348)
a x R e

with v v cosn8, w = w sinnO and no x-dependence, we have
n n

=0 K 1 n2)
Kx 0 = -2 (-v n + w n ) sinn9 (349)

R 2 n nR

which, for inextensional deformation (vn = wn/n) yields

K = 0 ; K =1(n2 _ l)w sinne ( 350)x R2 n

The expressions of Donnell in Table 5 yield

21 n. 2

K =KK = -w" = 0 ; K =K w=- w sinnG ( 351)(X x 9 2ýw 2 nR R

For n = 2 the expression for K is 33% in error. This error occurs when,

for example, one uses Donnell theory to calculate buckling loads of long

cylindrical shells under external pressure, for which the buckling mode

corresponds to n = 2. The buckling modal displacements correspond to

nearly inextensional hoop strain, so that the relationship ( 347) holds

with good accuracy. For shells which buckle with higher values of n, the

Donnell-Mushtari theory is more accurate.
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Twist, K Table 6 shows comparisons of the expressions for twist K o

of the reference surface. The Vlasov and the Donnell-Mushtari expressions

differ from the others for the same reasons given in the discussion of K

and K The Reissner, Berry, Naghdi expression differs because of neglect

of z/R , z/R compared to unity at an earlier stage in the derivation than

in the Byrne, FlIlgge, et al formulation. Sanders' expression is derived

through correction of that of Reissner, et al by addition of the term with

the factor (1/Rg - 1/R ) to eliminate non-zero K arising from rigid body

rotation. Kraus [ 78] demonstrates that the kinematic relations of

Byrne, FlIlgge, Goldenveizer, Lur'ye, and Novoshilov are consistent with

regard to rigid body motions. Kadi [ 81] found the same for the theories

of Love, Timoshenko, and Vlasov, but that the Donnell-Mushtari theory gives

non-zero curvature changes and twist due to rigid body translations.

Differences in Relations Involving Stresses and Strains

Through the Thickness

Total Strains. Table 7 shows differences in the expressions for total

strain at any point z in the wall thickness. The total strain is always

represented as the sum of stretching and bending components. The expres-

sions of Byrne, et al are the most general and result from application of

the Kirchoff hypothesis to the kinematic relationships of the three-dimen-

sional theory of elasticity. In the Love, Timoshenko, et al theory z/R

and z/RE are everywhere neglected compared to unity. The theory of Vlasov

represents a sort of middle ground between the Byrne, et al and Love, et al

formulations, in that series expansions are used for i/(l+z/R ), 1/(1l+z/RE).
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Force and Moment Resultants. Since the strains are known functions of the

thickness coordinate (Table 7) and, given Hooke's law, the stresses are

known functions of the strains, the forces acting on the edges of the shell

element shown in Fig. 51 can be derived by integration of the stresses

over the thickness coordinate z. If the reference surface is chosen as the

middle surface and if we rigorously note the dimensions [Eqs. ( 339) -

( 341) ] of the slice of thickness dz shown in Fig. 51, we can derive

three force resultants acting on the face perpendicular to the a coordinate

N /2

oN = J . 1 C l+t, z dz . 352)

II j f-h/2 a

and three more force resultants acting on the face perpendicular to the

8 coordinate

h/2 1
{N 2 1 + [ -Z dz 353)Nse -h/2

The positive directions of the force resultants are shown in Fig. 52.

These forces act at the reference surface and have units of force/length.

Similar expressions for moment resultants can be derived
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M f •-h/2 CY R
354)

= lY+ Z z dz{MJ = -h/2 {O•c} (

which are shown in Fig. 53 and have dimensions moment/length. Note

that even though a a=a ý from the symmetry of the stress tensor, the same

does not hold for stress and moment resultants: N U V N and M $ 9 M

unless R = R because the areas over which the stresses a OVa act

are different on the different edges of the shell element shown in Fig.

51.

Tables 8 and 9 show expressions for the stress and moment resultants

in terms of middle surface strains and changes in curvature for an iso-

tropic homogeneous shell wall. The theories of Love, Timoshenko, Reissner,

Naghdi, Berry, Sanders, Mushtari, and Donnell are arrived at by indis-

criminantly neglecting z/Ra and z/R• compared to unity. Novoshilov and

Goldenveizer obtain resultants by taking variations of the strain energy

functional and discarding selected terms. Byrne, Flhgge, and Lur'ye

simplify the z-integration by using series expansions for the quotients

i/(l+z/R ), I/(l+z/R ) Vlasov follows a similar procedure.

Which Theory is Best?

In modern computerized structural analysis in which energy methods are

almost universally applied to engineering shell problems it is most often
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advisable to avoid the use of Donnell-Mushtari theory or any theory in

which rigid body motion generates finite reference surface strains or

changes in curvature. The Donnell-Mushtari theory might still be applied

profitably in computer-oriented optimization analyses for preliminary

design. Such analyses usually involve sequential solution of many struc-

tural problems. The Donnell-Mushtari theory is computationally efficient

because it permits the use of fewer unknowns in equilibrium and eigenvalue

formulations. However, the analyst should be aware of the limitations il-

lustrated by the above example of inextensional bending of a cylinder. The

Donnell theory is accurate enough if the wavelength of the deformation

pattern is small compared to a typical radius of curvature of the shell.

The differences attributable to retention of z/R , z/R8 are of little im-

portance for most engineering problems, and it is best to choose the simplest

theories in this regard. In fact, retention of the z/R terms can lead to

results that puzzle computer program users and cause them to distrust the

programs they use. Two good examples have arisen in one of the writers'

experience which caused him to remove terms involving z/R compared to unity

in the BOSOR4 [ 18] and BOSOR5 [ 25] computer programs, which are now

based on Sanders' equations. One example is a rather thick (R/t = 10)

isotropic hemispherical shell clamped at the equator and uniformly heated.

Far away from the clamped boundary the stresses should be essentially zero.

However, in the original versions of BOSOR4 and BOSOR5, which were based

on total strain relations of the Byrne, Flfgge, type in Table 7,

the stresses did not die away but instead approached the values

•e ~e +zK•T

(Z) = E 2 a +V (l+ V) ( 355)
z 12 (+Z/R a) (I+z/R )
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Far away from the clamped edge deformation of the uniformly heated hemi-

sphere consists of a sum of a uniform radial (noraal to surface) expan-

sion plus a rigid body axial displacement. The rigid body displacement

does not give rise to any strains or changes in curvature. From the first

row of Table 5, the Byrne, Fltgge, et al relations for K and K, yield

zero curvature change corresponding to uniform radial expansion. The

strains e and e for uniform radial expansion are given, from Eqs.

335 a,b), by

e =e = w/R =aAT ( 356)

At the extreme fibers, z = -+t/2, the stress a(z) in Eq. ( 355) is there-

fore given by the spurious values

a( ¥t/2) E V aAT(t/2R) ( 357)

IfE=17 piV=0., =1-5 o0°

If E = 10 7psi, V = 0.3, a 105, AT = 3000, t/R = 0.1 the maximum stresses

are about -2000 psi at the outer fiber and +2000 psi at the inner fiber,

values large enough to stimulate a program user to telephone the program

developer. This error arises because actually the radial displacement due

to uniform heating is not uniform throughout the thickness as the theory

implies, but increases linearly with z as one moves radially outward from

the reference surface. This linear variation of w with z gives rise to

l+z/R terms in the numerators of the first two terms in Eq. ( 355) which

cancel the like terms in the deonominators, resulting in a correct predic-

tion of zero stress far from the clamped edge of the uniformly heated hemi-

spherical shell. However, the same correct result is obtained simply by
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by neglecting the z/R terms in Eq. ( .355) and simultaneously ignoring the

true nature of the linearly varying radial displacement, as the Kirchoff

hypothesis requires. This example demonstrates that it is inconsistent to

include z/R terms compared to unity, as in the first row of Table 7, while

neglecting the effect of extension of the normal to the reference surface.

The second example in which "small" z/R terms proved troublesome in BOSOR4

involved the axisymmetric shell structure shown in Fig. 54 (a) subjected

to an axial load V. The shell is a wheel rim. Half of the wheel rim is

modeled as a shell with 10 segments as shown in Fig. 54(b) . Some of

these segments have small ratios of meridional curvature R1 to thickness t.

For example, in Segment®R1 /t = 1.29. In Segments ,®,®,®, and®

R1 /t = 2.14, 2.10, 2.42, 3.36, and 3.36 respectively. Use of thin shell

theory for prediction of stresses in these segments ip questionable. Fig-

ure .54 (c) shows how the wheel rim deforms under uniform axial load V.

The extreme fiber stresses predicted in computer runs with and without the

z/R terms are plotted in Fig. .55. The discontinuities in the"z/R included"

curves are due to large discontinuities of z/R at segment boundaries. These

discontinuities stimulated a program user to call the program developer,

who decided to eliminate the offending z/R terms from the BOSOR4 computer

program permanently.
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Table 1

State-of-the-Art for Computer Programs for the Stress, Buckling,
and Vibration Analysis of Complex Axisymmetric Shells

Type of analysis Shell geonmetry Wall construction Loading

Nonlinear axisym- Multiple-segment Monocoque, variable Axisymmetric or non-
metric stress shells, each segment or constant thickness symmetric thermal and/

Linear symmetric or with its own wall con- Skew-stiffened shells or mechanical line loads
nonsymmetric stress struction, geometry, Fiber-wound shells and moments

Stability with linear and loading Layered orthotropic Axisymmetric or non-
symmetric or nonsym- Cylinder, cone, shells symmetric thermal and/
metric prestress or spherical, ogival, Corrugated, with or or mechanical dis-
with nonlinear sym- toroidal, ellipsoidal, without skin tributed loads
metric prestress etc. Layered orthotropic Proportional loading

Vibration with non- General meridional with temperature- Non-proportional
linear prestress shape; point-by- dependent material loading
analysis point input properties

Variable mesh point Axial and radial dis- Any of above wall
spacing within each continuities in shell types reinforced by
segment meridian stringers and/or

Arbitrary choice of rings treated as
reference, surface "smeared out"

General edge Any of above wall
conditions types'further rein-

Branched shells forced by rings treated
Prismatic shells and as discrete

composite built-up Wall properties vari-
panels able along meridian

a From Bushnell ( 18]
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Table 2

Physical Explanations of Terms in Local Stiffness
and Load-Geometric Matrices Eqs. ( 175) and ( 176)

Derived
Term From

Number Equation
Number Physical Explanation of the Term

0 136 Stiffness matrix for shell as deformed by the 'fixed' load

p fm(Smeared stiffeners included here.)
(n

44 PI 136 Modification of shell stiffness due to 'fixed' membrane

prestress in shell wall

3 170 Pressure-rotation (live lead) effect from 'fixed' load
x f"• P (m)

X( 157 Contribution to stiffness of discrete ring as deformed

by 'fixed' load.

.,) 157 Modification of discrete ring stiffness due to pre-
*-P
En buckling hoop force from 'fixed' load
S®

S173 Line load-rotation (live load) effect from 'fixed'
load p (m)"

136 Work done by prebuckling shell wall stress resultant

increments due to load increment Ap during buckling

modal shell wall rotations.

171 Pressure rotation (live load) effect from load in-

crement Ap (m)

0 157 Work done by prebuckling discrete ring hoop force in-

crement due to load increment Ap W during buckling
0 •modal ring rotations.

rd d ,173 Line load-rotation (live load) effect from load

o increment Ap9

0
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Table 3

Physical Explanations of Terms in Local Force

Vector and Where They Came From

Term Derived
Number From

Equations Physical Explanation of Term

( (89), ( 134) Thermal Loading on shell wall.

Q ( 99), (113), Surface tractions and pressure acting on
( 201) shell reference surface.

G( 95), ( 148), Thermal loading on discrete ring.
( 152), (155)

G ( 98), ( 152), Line loading along discrete ring
( 155), ( 201) centroidal axis.
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Table 4

Comparison of Solutions and Computer Times for
Uniformly Pressurized (P = 3.0 psi) Flat Circular
Plate with 10 Elements (see Figure 43)

Type of model
8-Node, 2-Dimensional Thin shell theory:

isoparametric finite difference
finite elements energy method

Item (10 elements) (10 elements)

(1) Maximum displacement (in.)
(a) Linear elastic 1.9356 1.9491
(b) Nonlinear elastic 0.38357 0.38043
(c) Nonlinear elastic-plastic 0.58089 0.57221

(2) Number of unknowns 109 31
(3) Maximum matrix bandwidth 19 8
(4) Total Newton iterations req'd

for entire case 37 34
(5) Computer time spent in the

Newton-Loop (sec) 66.439 2.343
(6) Number of "trials" (times that

material properties must be
updated) 10 10

(7) Computer time spent in updating
material properties (sec) 21.874 4.589

(8) Total run time (sec) 88.313 6.932
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Table 5

Change in Curvature of the Middle Surface

Theory "p

Byrne, Flagge, Goldenveiser,
Lur'ye, Novozhilov, Love, 1 + 9a BA 1B+ - + B

Timoshenko, Reissner, A Ba AB Oa# B -W -AB Bat
Naghdi, Berry, Sanders

1Cloeo e00A 1 l Ou v OA w+ 1 aO+= 0aB 1 uB 1B•v w
A B a ARB jSf .R,,ýA-A-a 'AB8-0 Ra) B ao ARB a Rp(AB ac B a# RO

1 al~w 1 OA w 1aI law\ 1 BBaw
Donnell, Mushtari -i i) -j-aw\_ - B-\8 /-k A' 1-B B1a BCaAu 8aA&/I a# a# iV B a#

Terms given for the Vlaaov theory cerrespond only to the linear (n = 1) terms of table 7

Table 6

Change in' Twist K of the Middle Surface

Byrne, Flagge, Lur'ye, Goldenveiser, A a fe.\ B \ i.f11 au v OBR 1 8v u BA

Novoshiov, Timoshenko, Love + B 00A+• R.\, -B AR A a.R B AR )

AB leo RB l {eA
Reissner, Berry, Naghdi B-A) 0-:B

A a. RB 6(O 1 1 1I•_ Bv BAu\
Sanders )I

RB l AB Rw Ac( 41w 9

M ushtari-Donnell AB a\B -B,) -- aBLAABa /

Terms given for the Vlasov theory corspond only to the linear (n - 1) terms of table 7
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Table 8

Force Resultants According to the Various Theoriesa

Theory (1- P ENli (1 - "W)N/El 2(1 +P)N~p/Eh 2(1 +P)Npa/Eh

Byrne, Flo=%gs Lur'ye' Irf h2( ih1

h2 P
Goldenveizer, Novozhilov e. +E Ye + pe. Ea+ T f2R~r l2R."

Love, Timoshenko, Reissner,
Berry, Naghdi, Mushtari, fa + Peo ep + pe f f
Donnell, Sanders

Vlaaov Samne anByrne, Same as Byrne,h21WI-N
Phigg, im'ye Fikgge, Lur'ye 24(F kRo Rpjp .1

a Note: 'T =K

Table 9

Moment Resultants According to the Various Theories a

Theory 12(1 -PI)M*/EAI 12(0 - ps) MOEAI 24(1 +P)M~p/Ehl 24(1 +v)Mpa/Ehs

Byrne, Flt~gge, Lur'ye R)(

Goldenveizer, Novozhilov,
Love, Timoshenko,
Reissner, Naghdi, Berry, K. + Y'cp 'P +;K T 7

Mushtari,) Donnell,
Sanders

Vlasov Same ws Fhigge, Same as Byrne, +Ra+--
Byrne, Lur'ye Flagge, Lur'ye R. 7

aNote: T H K
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ARC LENGTH, s (Inch".)
0 20 40 60 80 100 120 140

-1

-2

-3
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U p , tco o 2 1

EDES FREE

Figure 1 Meridional and normal displacements at 8 = 0 of a
hemisphere with a free edge subjected to pressure
p = cos 26 (from Bushnell [ 19]).

- 8
Finite Difference (BOSOR4)

"Static Reduction; Three and Five Gauss Points
S6 Cubic u, v, w Finite Element

z
W ~pzcos 2ew

-J S4Edges Free /'--No Static Red~uction;

E ,7 .Two Gauss Points;E = 10 psiT ~5i Khojasteh-Bakht
z 0.3 Type Element;

S2 - Linear u, v;
Cubic w;

< •Finite Element

0 20 40 60 80 100
NUMBER OF MESH POINTS

Figure 2 Comparison of convergence of finite element method
with finite difference energy method (from Bushnell
[ 19]).
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Figure 3 Noncircular cylinder subjected to uniform end
shortening (from Almroth and Brogan [ 22]).
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400 -

o , 1 length. S Arc length,' S Arc length S

.0 5 1 0 15 2 0 2. 5 3. 0 3 5 4 -0 4 5 5 0 5.5 6 0

End shortening/shell thickness

Figure 4 Load-deflection curves for axially compressed perfect
and imperfect elliptic cylinders (from Bushnell et al.
[ 23]).
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Figure 5 Curved Beam of Developed Length, L

REFERENCE SURFACE
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Figure 6 Coordinates (s,z) and Displacements (u,w)
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Figure 7 Local Radius of Curvature R(s)

and Rotation 0
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Figure 8 Derivation of Eqs. ( 19) and ( 20)
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(b) U(u*,w*) = (horizontal, vertical)

U (u,w) = (tangential, normal)

Figure (o) Loading em the So=e; (b) Displacement Notation

HINGE ON ROLLERS

AT s L

Figure 10 Boundary Conditions
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Figure .12 Local and Assembled Matrix Architecture
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Pcr - - Bifurcation Point,

Post-Buckling Curve

Pre-
4o /Buckling

-. Curve

DEFLECTION-

Figure 14 Bifurcation buckling at Pcr from prebuckling
equilibrium state determined from nonlinear
equations

Mo

Figure 15 Prestress resultants at an interior
point along the beam reference surface
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Figure 17 Shell element with displacements, rotations, forces
(from Bushnell [ 27]).
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A U.+J

Surface;• , I K
W*+

(a)SECTION AA

Support Pt. B: --Shell Ref. 
End of Shell:SurfaceU 

V- W
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-Support Pt. A:

.I S h e ll: 7+ uv+ v.  w + d ,u-I I w-9
d2

k-d _ý1  -0

(b)

Figure 19 Geometry for constraint conditions: a) shell refer-
ence surface discontinuity; b) support points (from
Bushnell [ 27]).
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• 7 e Ring Attachment Point

• •--eI (Negative)

A , S Segment #1

Free Edge With Ring

Figure 20(a) Two-segment shell meridian with discrete rings, discontinuity,

and various quantities identified (from Bushnell [ 27]).
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o-- Fictitious
A Point

Shell Energy = El LqiJ[B]T[C][B]Iqit

[C] Constitutive Law

[B] : Kinematic Law

Lqij E Lwi.,u i,vi,wi,ui+lvi+l,wi+Ij

Shell
Segment

Finite
Difference
Elemnent7 -1, WI

S~E tf-\/ ,,
2L k

Ui ,Vi- Wi
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Fictitious --o
Point

Figure 21 Nodal displacement degrees of freedom for variable
nodal point spacing.
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w, Normal Edge Displacement

6p= cos 2e
m "Edges Free

z

IhJ

4 -
ci" - Finite Element Analysis

With Cubic u, v, w
C. --- Finite Difference (BOSOR4)
U) 1

W 2

w •' Computer Time
Ito Compute -- -- "---

0 -- -------
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NUMBER OF MESH POINTS

Figure 22 Computer times to form stiffness matrix K, and
rates of convergence of normal edge displacement
for free hemisphere with nonuniform pressure
p(s,e) = p0 cos 20 (from Bushnell [ 18]).
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bI- Prebuckling

bPostbuckling

VOLUME DISPLACED

Figure 23 Load-deflection curves for shallow spherical cap,

showing bifurcation points from linear prebuckling

curve (Plb) and nonlinear prebuckling curve (Pnb)

(from Bushnell [ 18]).
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Figure 24 Form of global stiffness matrix [K1] including
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Figure 25 Strategy for calculation of critical buckling load Pnb "
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(4) (n-l•.,Ptb =PCr

4 ~ Prebucklin g/-n

/ to- Postbuckling

U)/U)W
0.

VOLUME DISPLACED

Figure 26 Situation in which the strategy corresponding to Equations
( 178) - ( 188) fails because the axisymmetric collaýse
load Pnp is lower than the critical load estimate p(c (n=ll).
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D
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VOLUME DISPLACED

Figure 27 Situation in which the strategy cor esponding to Equations

( 178) - ( 188) fails because Xff) in Eq. ( 184) is

not the smallest eigenvalue in absolute value.
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Figure 28 (a) Stability determinant at n = no as function of load

L, (b),(c) eigenvalues as function of number of circum-

ferential waves, n.
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Figure 29 Buckling of axially compressed cylinder (from Bushnell
[ 181).
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NUMBER OF CIRCUMFERENTIAL WAVES

Figure 30 Sequence of axial load and circumferential wave number
estimates during calculation of buckling of cylinder
with nonlinear prebuckling effects included (from
Bushnell [ 18]).
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Figure 31 Eigenvalue 'separation' for axially compressed cylinder

(from Bushnell [ 18]).
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C,)

n (CIRCUMFERENTIAL WAVES)

Figure 33 Ring-stiffened conical shell with simultaneous local
and general instability modes (from Bushnell [ 34]).
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u S Standard lowest order finite element

IU 1=+ +a
i i1v l 1 2

0~ ~ 4--- -4va 3 + a4s(a

x. I 5 +a6 s+a7 S e8

Energy evaluated at Gaussian integration points.

SU 1  -Finite element with extra internal d. o. f.

u. u i~+l u a + as
i u2 1 1 2s + a 3 s + a 4S
iV. V2 3v + v =e + a s +a + a s
is 71 5  6 7 8 (b)

\is WI 2 3
W 2 i+9 + aos + ais + a2s

II 9 10 11 1
xl xI+l

Energy evaluated at Gaussian integration points.
Static reduction used to get local [K].

Finite element with extra nodal d.o.f.
uj ui+ 1  a~2 3
Ui ui] u = al + a2s + s + a4s
vi i 2 3 4

Uia - v a 5 + a 6 +iaS 2 7 (C)
V, 1+w - a 9 + a s + a 5s2 + a S3

t+ 9 10 11. 12

Energy evaluated at Gaussian integration points.5X, __LAL~jXi+ 1

Finite difference with (uvii) on half-stations

Su e U 1 + a 2s
1+1 

v a1, a 3 +a 4 s (d)
W i-1 1i Wi+ 1  2

I w a5 + a6s+ a

- J Energy evaluated at s =/2.

"u Finite difference with (wi) on half-stations

ý v i . .. .. a - 1 + a2s ( e )
Qv a 3 + a4s(e

Wi-] W Ww a + a S + a 7 s2

J Energy evaluated at s - 1/2.

Figure 34 Various discrete models for energy methods (from Bushnell

[ 19]).
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u, v 0 4)4

Figure 2.35 Displacement functions for finite element model Q
(from Bushnell [2.19]).

w

U,V

ELENMENT • /AMW"

Figure 36 Displacement functions for finite difference model
(from Bushnell [ 19]).
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Figure 37 Structural equivalent of finite difference model Q or
' (courtesy Carlos Felippa) (from Bushnell [ 19]).
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FINITE ELEMENT METHOD (
[INITE ELEMENT METHOD 0 STIFFNESS MATRIX CALCULATTON FINITE DIFFERENCE METHODS G AND (

STIFFNESS MATRIX CALCULATION WITH STATIC REDUCTION STIFFNESS MATRIX CALCULATION

H I=I+ l J" I + 1 • I = I + I

k Initialize K (8 x 8), k(2 2
Initialize K u( 8) IWital2, K( 2) 8) Initialize K,(7 x 7)

Interpolate geometry
parameters r, r', 1/R1 , Interpolate physical
I/R 2 , C(6 x 6), thermal parameters as before
and surface loads

Calculate D(3 x 8) for Calculate 0(3 x 12)
d =Dq fofor d =Dq

I d=DI

Calculate B(6 x 8) for Calculate B(6 x 12) Calculate B(6 x 7) for
B(q) for f = Bq e = Bq

Form K1 T Form W = BTBForm Kk = BTCB

Calculate local right- ae oa rgt Calculate local right-hand-side vector, Fk(8) hand-side vector, .k(12) hand-side vector, Fk( 7
)

Is i
NO J n umber of NO J > number of

Gaussian integration Gaussian integration
points pit

YES~ Perform static reducti'on
YES to obtaip local stiffness

mtatrix Ký(8 x 8) and rjh
vector, Fk

AsebeK into global Assemble J; into globa Assemb~o K, into globalstiffness matrix K and stiffness matrix KI and stiffness diatrix KI and
Fk into F I Fk into F rk into r

NIsNO IIs~nrI number o I > numb rr n N > number o

YES ~YESYE

SST71FIFNESSMATRIX FINISH D 1STIFFNESS MATRIX FINISHED] STIFFNESS MATRIX FINISHED

Figure 38 Flow charts for the calculaton of iffness matrix K1
with finite-element models W and Z) and finite-
difference models G or ( (adapted from Bushnell
[ 19]).

228



RINGS

d2 " t

SECTION AA

€'"STRINGERSf

t ACTUAL MATERIAL PROPERTIES

t Elastic Mass Thermal Exp.
Moduli Density Coefficients

Shell Wall E,G m a

Stringers Es ms as
EQUIVALENT WALL

Rings Er mr ar

LAYERS1

EQUIVALENT LAYERED ORTHOTROPIC SHELL WALL

Shell Orthotropic Material Properties
Wall Thick-
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Figure 39 How to model a shell wall with smeared stringers and rings.
Stiffeners and parts of stiffeners are treated as if they
were orthotropic layers or lamina (from Bushnell [ 341).
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Figure 40 Geometry of an N-Layered Laminate
(adapted from Jones [ 6]).
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THIN SHELLS
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/ I

.- - /TWO-DIMENSIONAL
S- s REGION

Figure 41 Hybrid body of revolution: discretization in one and two
dimensions (from Bushnell [I 35]).
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Figure 43 Flat plate under uniform pressure modeled with 10

isoparametric 8-node finite elements (from Bushnell

[ 35]).
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Figure .44 Variables used in the analysis of (a) thin shell segments,
(b) solids of revolution (from Bushnell [ 35]).
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Shell

Shell Reference
Surface DISCRETE RING
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NOTE: Discrete ring attachment point is considered to be
located on the shell reference surface.

Figure 45 Discrete ring as modeled in the hy brid program (from

Bushnell [ 25]).
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Figure 46 Isoparametric 8-node solid element of revolution used in
hybrid computer program (from Bushnell [ 35]).
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Figure 47 Local accelerations g1, g9 ' g3  due to rigid body trans-lational (a x, ay az) and angular ( x •y, A z) accel-erations and angular velocity •x of and about the center
of mass.
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Figure 48 Surface tractions on isoparametric quadrilateral finite
element of revolution. Pt, Pc' Pn form a right-handed
system.
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Figure 49 Junction between thin shell segment and two-dimensional
finite element region (from Bushnell 1 35]).
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Figure 50 Middle surface coordinates (from Leissa [ 56]).
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Figure 51 Notation and positive directions of stress in shell
coordinates (from Leissa [ 56]).
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---- = z/R included

3- = z/R neglected

2

U-

S 0

LUJ

-2 

\Z

Seg. Seg. Seg. Seg. Seg. Seg.
lO O G O® © @Segments

3

2

I.-

0-

-2 ,
0 2 3 4 5 6

MERIDIONAL ARC LENGTH - s

Figure 55 Inner and outer fiber stresses along meridian of wheel
rim predicted from theories including and neglecting
z/R compared to unity [see Eq. ( 339)].
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